Staudenmayer John, Buonaccorsi John P
Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003, USA.
Biometrics. 2006 Dec;62(4):1178-89. doi: 10.1111/j.1541-0420.2006.00615.x.
Population abundances are rarely, if ever, known. Instead, they are estimated with some amount of uncertainty. The resulting measurement error has its consequences on subsequent analyses that model population dynamics and estimate probabilities about abundances at future points in time. This article addresses some outstanding questions on the consequences of measurement error in one such dynamic model, the random walk with drift model, and proposes some new ways to correct for measurement error. We present a broad and realistic class of measurement error models that allows both heteroskedasticity and possible correlation in the measurement errors, and we provide analytical results about the biases of estimators that ignore the measurement error. Our new estimators include both method of moments estimators and "pseudo"-estimators that proceed from both observed estimates of population abundance and estimates of parameters in the measurement error model. We derive the asymptotic properties of our methods and existing methods, and we compare their finite-sample performance with a simulation experiment. We also examine the practical implications of the methods by using them to analyze two existing population dynamics data sets.
种群丰度极少(如果曾经有过的话)是已知的。相反,它们是在存在一定不确定性的情况下进行估计的。由此产生的测量误差会对后续模拟种群动态并估计未来时间点丰度概率的分析产生影响。本文探讨了在一个这样的动态模型——带漂移的随机游走模型中,测量误差的后果的一些突出问题,并提出了一些校正测量误差的新方法。我们提出了一类广泛且现实的测量误差模型,该模型允许测量误差中存在异方差性和可能的相关性,并且我们给出了关于忽略测量误差的估计量偏差的分析结果。我们的新估计量包括矩估计法估计量和从种群丰度的观测估计值以及测量误差模型中的参数估计值出发得到的“伪”估计量。我们推导了我们的方法和现有方法的渐近性质,并通过模拟实验比较了它们的有限样本性能。我们还通过使用这些方法分析两个现有的种群动态数据集来检验这些方法的实际意义。