Shehu Amarda, Kavraki Lydia E, Clementi Cecilia
Departments of Computer Science, Bioengineering, and Chemistry, Rice University, Houston, Texas, USA.
Biophys J. 2007 Mar 1;92(5):1503-11. doi: 10.1529/biophysj.106.094409. Epub 2006 Dec 8.
Describing and understanding the biological function of a protein requires a detailed structural and thermodynamic description of the protein's native state ensemble. Obtaining such a description often involves characterizing equilibrium fluctuations that occur beyond the nanosecond timescale. Capturing such fluctuations remains nontrivial even for very long molecular dynamics and Monte Carlo simulations. We propose a novel multiscale computational method to exhaustively characterize, in atomistic detail, the protein conformations constituting the native state with no inherent timescale limitations. Applications of this method to proteins of various folds and sizes show that thermodynamic observables measured as averages over the native state ensembles obtained by the method agree remarkably well with nuclear magnetic resonance data that span multiple timescales. By characterizing equilibrium fluctuations at atomistic detail over a broad range of timescales, from picoseconds to milliseconds, our method offers to complement current simulation techniques and wet-lab experiments and can impact our understanding and description of the relationship between protein flexibility and function.
描述和理解蛋白质的生物学功能需要对蛋白质天然态系综进行详细的结构和热力学描述。获得这样的描述通常涉及表征纳秒时间尺度以上发生的平衡涨落。即使对于非常长的分子动力学和蒙特卡罗模拟,捕捉这些涨落仍然并非易事。我们提出了一种新颖的多尺度计算方法,能够在原子细节上详尽地表征构成天然态的蛋白质构象,且没有固有的时间尺度限制。将该方法应用于各种折叠和大小的蛋白质表明,通过该方法获得的天然态系综上的平均值所测量的热力学可观测量与跨越多个时间尺度的核磁共振数据非常吻合。通过在从皮秒到毫秒的广泛时间尺度上以原子细节表征平衡涨落,我们的方法有助于补充当前的模拟技术和湿实验室实验,并可能影响我们对蛋白质灵活性与功能之间关系的理解和描述。