Morton Newton, Maniatis Nikolas, Zhang Weihua, Ennis Sarah, Collins Andrew
Human Genetics Division, University of Southampton, Southampton General Hospital, Southampton ,SO16 6YD, UK.
Am J Hum Genet. 2007 Jan;80(1):19-28. doi: 10.1086/510401. Epub 2006 Dec 5.
Ambitious programs have recently been advocated or launched to create genomewide databases for meta-analysis of association between DNA markers and phenotypes of medical and/or social concern. A necessary but not sufficient condition for success in association mapping is that the data give accurate estimates of both genomic location and its standard error, which are provided for multifactorial phenotypes by composite likelihood. That class includes the Malecot model, which we here apply with an illustrative example. This preliminary analysis leads to five inferences: permutation of cases and controls provides a test of association free of autocorrelation; two hypotheses give similar estimates, but one is consistently more accurate; estimation of the false-discovery rate is extended to causal genes in a small proportion of regions; the minimal data for successful meta-analysis are inferred; and power is robust for all genomic factors except minor-allele frequency. An extension to meta-analysis is proposed. Other approaches to genome scanning and meta-analysis should, if possible, be similarly extended so that their operating characteristics can be compared.
近期,人们倡导或启动了一些雄心勃勃的计划,旨在创建全基因组数据库,用于对DNA标记与医学和/或社会关注的表型之间的关联进行荟萃分析。关联图谱成功的一个必要但不充分条件是,数据能够准确估计基因组位置及其标准误差,而对于多因素表型,复合似然性可提供这些估计值。该类别包括Malecot模型,我们在此通过一个示例应用该模型。这一初步分析得出了五个推论:病例与对照的置换提供了一个无自相关的关联检验;两个假设给出了相似的估计值,但其中一个始终更准确;错误发现率的估计扩展到了一小部分区域中的因果基因;推断出了成功进行荟萃分析所需的最少数据;对于除小等位基因频率之外的所有基因组因素,功效都具有稳健性。本文提出了对荟萃分析的扩展。如果可能的话,其他基因组扫描和荟萃分析方法也应进行类似的扩展,以便能够比较它们的操作特性。