Suppr超能文献

间充质干细胞与组织工程。

Mesenchymal stem cells and tissue engineering.

作者信息

Marion Nicholas W, Mao Jeremy J

机构信息

College of Dental Medicine - Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, New York, USA.

出版信息

Methods Enzymol. 2006;420:339-61. doi: 10.1016/S0076-6879(06)20016-8.

Abstract

Mesenchymal stem cells (MSCs) have become one of the most studied stem cells, especially toward the healing of diseased and damaged tissues and organs. MSCs can be readily isolated from a number of adult tissues by means of minimally invasive approaches. MSCs are capable of self-replication to many passages and, therefore, can potentially be expanded to sufficient numbers for tissue and organ regeneration. MSCs are able to differentiate into multiple cell lineages that resemble osteoblasts, chondrocytes, myoblasts, adipocytes, and fibroblasts and express some of the key markers typical of endothelial cells, neuron-like cells, and cardiomyocytes. MSCs have been used alone for cell delivery or seeded in biomaterial scaffolds toward the healing of tissue and organ defects. After an increasing number of the "proof of concept" studies, the remaining tasks are many, such as to determine MSC interactions with host cells and signaling molecules, to investigate the interplay between MSCs and biological scaffold materials, and to apply MSC-based therapies toward clinically relevant defect models. The ultimate goal of MSC-based therapies has valid biological rationale in that clusters of MSCs differentiate to form virtually all connective tissue during development. MSC-based therapies can only be realized our improved understanding of not only their fundamental properties such as population doubling and differentiation pathways but also translational studies that use MSCs in the de novo formation and/or regeneration of diseased or damaged tissues and organs.

摘要

间充质干细胞(MSCs)已成为研究最多的干细胞之一,尤其是在患病和受损组织及器官的修复方面。通过微创方法可以很容易地从多种成人组织中分离出MSCs。MSCs能够自我复制许多代,因此有可能扩增到足够数量用于组织和器官再生。MSCs能够分化为多种细胞谱系,类似于成骨细胞、软骨细胞、成肌细胞、脂肪细胞和成纤维细胞,并表达一些内皮细胞、神经元样细胞和心肌细胞典型的关键标志物。MSCs已被单独用于细胞递送或接种在生物材料支架上以促进组织和器官缺损的修复。在进行了越来越多的“概念验证”研究之后,仍有许多任务,例如确定MSCs与宿主细胞和信号分子的相互作用,研究MSCs与生物支架材料之间的相互作用,以及将基于MSCs的疗法应用于临床相关的缺损模型。基于MSCs的疗法的最终目标具有有效的生物学原理,因为在发育过程中,MSCs簇分化形成几乎所有的结缔组织。只有在我们不仅更好地理解了它们的基本特性,如群体倍增和分化途径,而且进行了将MSCs用于患病或受损组织和器官的从头形成和/或再生的转化研究之后,基于MSCs的疗法才能实现。

相似文献

1
Mesenchymal stem cells and tissue engineering.
Methods Enzymol. 2006;420:339-61. doi: 10.1016/S0076-6879(06)20016-8.
2
3
Spontaneous Differentiation of Human Mesenchymal Stem Cells on Poly-Lactic-Co-Glycolic Acid Nano-Fiber Scaffold.
PLoS One. 2016 Apr 7;11(4):e0153231. doi: 10.1371/journal.pone.0153231. eCollection 2016.
7
Mesenchymal Stem Cells Differentiation: Mitochondria Matter in Osteogenesis or Adipogenesis Direction.
Curr Stem Cell Res Ther. 2020;15(7):602-606. doi: 10.2174/1574888X15666200324165655.
9
Directed Differentiation of Human-Induced Pluripotent Stem Cells to Mesenchymal Stem Cells.
Methods Mol Biol. 2016;1416:289-98. doi: 10.1007/978-1-4939-3584-0_17.

引用本文的文献

2
Fabrication of Multiscale, Multidirectional Orientated Collagen Hydrogels with Guided Cell Alignment Using Fluidics and a Three-Dimensional Printing.
ACS Biomater Sci Eng. 2025 May 12;11(5):2875-2887. doi: 10.1021/acsbiomaterials.4c02156. Epub 2025 Apr 18.
3
Cell-based regenerative and rejuvenation strategies for treating neurodegenerative diseases.
Stem Cell Res Ther. 2025 Apr 6;16(1):167. doi: 10.1186/s13287-025-04285-7.
6
Deep-supercooling preservation of stem cell spheroids for chondral defect repairment.
Stem Cell Reports. 2024 Dec 10;19(12):1665-1676. doi: 10.1016/j.stemcr.2024.10.008. Epub 2024 Nov 21.
7
Revolutionizing medicine: recent developments and future prospects in stem-cell therapy.
Int J Surg. 2024 Dec 1;110(12):8002-8024. doi: 10.1097/JS9.0000000000002109.
8
Reliable Fabrication of Mineral-Graded Scaffolds by Spin-Coating and Laser Machining for Use in Tendon-to-Bone Insertion Repair.
Adv Healthc Mater. 2024 Dec;13(31):e2402531. doi: 10.1002/adhm.202402531. Epub 2024 Aug 5.
9
A Gelatin-Based Biomimetic Scaffold Promoting Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells.
Indian J Orthop. 2024 May 18;58(7):932-943. doi: 10.1007/s43465-024-01182-8. eCollection 2024 Jul.

本文引用的文献

1
Adipose tissue engineering from human adult stem cells: clinical implications in plastic and reconstructive surgery.
Plast Reconstr Surg. 2007 Jan;119(1):71-83. doi: 10.1097/01.prs.0000244840.80661.e7.
2
Craniofacial tissue engineering by stem cells.
J Dent Res. 2006 Nov;85(11):966-79. doi: 10.1177/154405910608501101.
3
Mesenchymal stem cells as trophic mediators.
J Cell Biochem. 2006 Aug 1;98(5):1076-84. doi: 10.1002/jcb.20886.
4
Cartilage tissue engineering for degenerative joint disease.
Adv Drug Deliv Rev. 2006 May 20;58(2):300-22. doi: 10.1016/j.addr.2006.01.012. Epub 2006 Mar 30.
5
Craniofacial bone tissue engineering.
Dent Clin North Am. 2006 Apr;50(2):175-90, vii. doi: 10.1016/j.cden.2005.11.003.
6
Electrospun silk-BMP-2 scaffolds for bone tissue engineering.
Biomaterials. 2006 Jun;27(16):3115-24. doi: 10.1016/j.biomaterials.2006.01.022. Epub 2006 Feb 3.
7
Use of differentiating adult stem cells (marrow stromal cells) to identify new downstream target genes for transcription factors.
Stem Cells. 2006 Mar;24(3):642-52. doi: 10.1634/stemcells.2005-0270. Epub 2006 Jan 26.
9
Bone reconstruction: from bioceramics to tissue engineering.
Expert Rev Med Devices. 2005 Jan;2(1):87-101. doi: 10.1586/17434440.2.1.87.
10
Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation.
Tissue Eng. 2005 Sep-Oct;11(9-10):1498-505. doi: 10.1089/ten.2005.11.1498.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验