Etcheverry Mayalen, Moulin-Frier Clément, Oudeyer Pierre-Yves, Levin Michael
INRIA, University of Bordeaux, Bordeaux, France.
Poietis, Pessac, France.
Elife. 2025 Jan 13;13:RP92683. doi: 10.7554/eLife.92683.
Many applications in biomedicine and synthetic bioengineering rely on understanding, mapping, predicting, and controlling the complex behavior of chemical and genetic networks. The emerging field of diverse intelligence investigates the problem-solving capacities of unconventional agents. However, few quantitative tools exist for exploring the competencies of non-conventional systems. Here, we view gene regulatory networks (GRNs) as agents navigating a problem space and develop automated tools to map the robust goal states GRNs can reach despite perturbations. Our contributions include: (1) Adapting curiosity-driven exploration algorithms from AI to discover the range of reachable goal states of GRNs, and (2) Proposing empirical tests inspired by behaviorist approaches to assess their navigation competencies. Our data shows that models inferred from biological data can reach a wide spectrum of steady states, exhibiting various competencies in physiological network dynamics without requiring structural changes in network properties or connectivity. We also explore the applicability of these 'behavioral catalogs' for comparing evolved competencies across biological networks, for designing drug interventions in biomedical contexts and synthetic gene networks for bioengineering. These tools and the emphasis on behavior-shaping open new paths for efficiently exploring the complex behavior of biological networks. For the interactive version of this paper, please visit https://developmentalsystems.org/curious-exploration-of-grn-competencies.
生物医学和合成生物工程中的许多应用都依赖于对化学和遗传网络复杂行为的理解、映射、预测和控制。新兴的多样化智能领域研究非常规主体的问题解决能力。然而,用于探索非常规系统能力的定量工具却很少。在这里,我们将基因调控网络(GRN)视为在问题空间中导航的主体,并开发自动化工具来绘制GRN在受到扰动时仍能达到的稳健目标状态。我们的贡献包括:(1)改编人工智能中基于好奇心驱动的探索算法,以发现GRN可达到的目标状态范围,以及(2)提出受行为主义方法启发的实证测试,以评估其导航能力。我们的数据表明,从生物数据推断出的模型可以达到广泛的稳态,在生理网络动态中表现出各种能力,而无需网络属性或连接性的结构变化。我们还探索了这些“行为目录”在比较生物网络中进化出的能力、设计生物医学背景下的药物干预以及生物工程的合成基因网络方面的适用性。这些工具以及对行为塑造的强调为有效探索生物网络的复杂行为开辟了新途径。欲获取本文的交互式版本,请访问https://developmentalsystems.org/curious-exploration-of-grn-competencies 。