Suppr超能文献

细菌鞭毛的力-伸长测量:触发多态转变

Force-extension measurements on bacterial flagella: triggering polymorphic transformations.

作者信息

Darnton Nicholas C, Berg Howard C

机构信息

Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142, USA.

出版信息

Biophys J. 2007 Mar 15;92(6):2230-6. doi: 10.1529/biophysj.106.094037. Epub 2006 Dec 15.

Abstract

Bacterial flagella can adopt several different helical shapes in response to varying environmental conditions. A geometric model by Calladine ascribes these discrete shape changes to cooperative transitions between two stable tertiary structures of the constituent protein, flagellin, and predicts an ordered set of 12 helical states called polymorphic forms. Using long polymers of purified flagellin, we demonstrate controlled, reversible transformations between different polymorphic forms. While pulling on a single filament using an optical tweezer, we record the progressive transformation of the filament and also measure the force-extension curve. Both normal and coiled polymorphic forms stretch elastically with a bending stiffness of 3.5 pN x microm(2). At a force threshold of 4-7 pN or 3-5 pN (for normal and coiled forms, respectively), a fraction of the filament suddenly transforms to the next, longer, polymorphic form. This transformation is not deterministic because the force and amount of transformation vary from pull to pull. In addition, the force is highly dependent on stretching rate, suggesting that polymorphic transformation is associated with an activation energy.

摘要

细菌鞭毛可根据不同的环境条件呈现出几种不同的螺旋形状。卡拉丹提出的一个几何模型将这些离散的形状变化归因于组成蛋白鞭毛蛋白的两种稳定三级结构之间的协同转变,并预测了一组有序的12种螺旋状态,称为多晶型。我们使用纯化的鞭毛蛋白长聚合物,展示了不同多晶型之间可控的、可逆的转变。在用光镊拉动单根细丝时,我们记录细丝的渐进转变,并测量力-伸长曲线。正常和卷曲的多晶型细丝均以3.5皮牛×微米²的弯曲刚度弹性拉伸。在4-7皮牛或3-5皮牛的力阈值下(分别对应正常和卷曲形式),一部分细丝会突然转变为下一个更长的多晶型。这种转变不是确定性的,因为每次拉动时力和转变量都有所不同。此外,力高度依赖于拉伸速率,这表明多晶型转变与活化能有关。

相似文献

1
Force-extension measurements on bacterial flagella: triggering polymorphic transformations.
Biophys J. 2007 Mar 15;92(6):2230-6. doi: 10.1529/biophysj.106.094037. Epub 2006 Dec 15.
2
Force-extension curves of bacterial flagella.
Eur Phys J E Soft Matter. 2010 Nov;33(3):259-71. doi: 10.1140/epje/i2010-10664-5. Epub 2010 Nov 4.
3
Model for stretching elastic biopolymers which exhibit conformational transformations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Feb;75(2 Pt 1):021907. doi: 10.1103/PhysRevE.75.021907. Epub 2007 Feb 15.
5
Polymorphic transition in bacterial flagella.
Symp Soc Exp Biol. 1982;35:53-76.
6
Continuum model for polymorphism of bacterial flagella.
Phys Rev Lett. 2005 Jun 24;94(24):248101. doi: 10.1103/PhysRevLett.94.248101. Epub 2005 Jun 21.
7
Rotation-induced polymorphic transitions in bacterial flagella.
Phys Rev Lett. 2013 Apr 12;110(15):158104. doi: 10.1103/PhysRevLett.110.158104. Epub 2013 Apr 9.
8
A mesoscopic model for helical bacterial flagella.
J Math Biol. 2006 Jul;53(1):162-78. doi: 10.1007/s00285-006-0380-8. Epub 2006 Apr 24.
9
Modeling polymorphic transformation of rotating bacterial flagella in a viscous fluid.
Phys Rev E. 2017 Jun;95(6-1):063106. doi: 10.1103/PhysRevE.95.063106. Epub 2017 Jun 14.
10
Pulling geometry-induced errors in single molecule force spectroscopy measurements.
Biophys J. 2007 May 1;92(9):L76-8. doi: 10.1529/biophysj.107.104901. Epub 2007 Feb 26.

引用本文的文献

1
Load-dependent resistive-force theory for helical filaments.
Philos Trans A Math Phys Eng Sci. 2025 Sep 11;383(2304):20240260. doi: 10.1098/rsta.2024.0260.
2
Form and function in biological filaments: a physicist's review.
Philos Trans A Math Phys Eng Sci. 2025 Sep 11;383(2304):20240253. doi: 10.1098/rsta.2024.0253.
3
Flagellum Pumping Efficiency in Shear-Thinning Viscoelastic Fluids.
J Fluid Mech. 2024 Nov 25;999. doi: 10.1017/jfm.2024.666. Epub 2024 Nov 11.
4
The bacterial flagellum as an object for optical trapping.
Biophys Rev. 2024 Jul 24;16(4):403-415. doi: 10.1007/s12551-024-01212-7. eCollection 2024 Aug.
5
Bonded straight and helical flagellar filaments form ultra-low-density glasses.
Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2215766120. doi: 10.1073/pnas.2215766120. Epub 2023 Apr 17.
6
Frustrated 'run and tumble' of swimming bacteria in nematic liquid crystals.
Interface Focus. 2022 Oct 14;12(6):20220039. doi: 10.1098/rsfs.2022.0039. eCollection 2022 Dec 6.
7
Optical tweezers across scales in cell biology.
Trends Cell Biol. 2022 Nov;32(11):932-946. doi: 10.1016/j.tcb.2022.05.001. Epub 2022 Jun 4.
8
Bending stiffness characterization of Bacillus subtilis' flagellar filament.
Biophys J. 2022 Jun 7;121(11):1975-1985. doi: 10.1016/j.bpj.2022.05.010. Epub 2022 May 12.
9
Modeling of lophotrichous bacteria reveals key factors for swimming reorientation.
Sci Rep. 2022 Apr 20;12(1):6482. doi: 10.1038/s41598-022-09823-4.
10
Flagellated Janus particles for multimodal actuation and transport.
Biomicrofluidics. 2021 Aug 30;15(4):044104. doi: 10.1063/5.0053647. eCollection 2021 Jul.

本文引用的文献

1
Theoretical analysis of twist/bend ratio and mechanical moduli of bacterial flagellar hook and filament.
Biophys J. 2004 May;86(5):3204-10. doi: 10.1016/S0006-3495(04)74368-4.
2
RECONSTITUTION OF BACTERIAL FLAGELLA IN VITRO.
J Mol Biol. 1964 Oct;10:42-56. doi: 10.1016/s0022-2836(64)80026-7.
3
Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy.
Nature. 2003 Aug 7;424(6949):643-50. doi: 10.1038/nature01830.
4
The rotary motor of bacterial flagella.
Annu Rev Biochem. 2003;72:19-54. doi: 10.1146/annurev.biochem.72.121801.161737. Epub 2002 Dec 11.
6
Real-time imaging of fluorescent flagellar filaments.
J Bacteriol. 2000 May;182(10):2793-801. doi: 10.1128/JB.182.10.2793-2801.2000.
7
Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction.
Nat Struct Biol. 1998 Feb;5(2):125-32. doi: 10.1038/nsb0298-125.
8
Quasi- and nonequivalence in the structure of bacterial flagellar filament.
Biophys J. 1998 Jan;74(1):569-75. doi: 10.1016/S0006-3495(98)77815-4.
9
Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers.
Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14433-7. doi: 10.1073/pnas.94.26.14433.
10
Molecular architecture of bacterial flagellum.
Q Rev Biophys. 1997 Feb;30(1):1-65. doi: 10.1017/s0033583596003319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验