Darnton Nicholas C, Berg Howard C
Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142, USA.
Biophys J. 2007 Mar 15;92(6):2230-6. doi: 10.1529/biophysj.106.094037. Epub 2006 Dec 15.
Bacterial flagella can adopt several different helical shapes in response to varying environmental conditions. A geometric model by Calladine ascribes these discrete shape changes to cooperative transitions between two stable tertiary structures of the constituent protein, flagellin, and predicts an ordered set of 12 helical states called polymorphic forms. Using long polymers of purified flagellin, we demonstrate controlled, reversible transformations between different polymorphic forms. While pulling on a single filament using an optical tweezer, we record the progressive transformation of the filament and also measure the force-extension curve. Both normal and coiled polymorphic forms stretch elastically with a bending stiffness of 3.5 pN x microm(2). At a force threshold of 4-7 pN or 3-5 pN (for normal and coiled forms, respectively), a fraction of the filament suddenly transforms to the next, longer, polymorphic form. This transformation is not deterministic because the force and amount of transformation vary from pull to pull. In addition, the force is highly dependent on stretching rate, suggesting that polymorphic transformation is associated with an activation energy.
细菌鞭毛可根据不同的环境条件呈现出几种不同的螺旋形状。卡拉丹提出的一个几何模型将这些离散的形状变化归因于组成蛋白鞭毛蛋白的两种稳定三级结构之间的协同转变,并预测了一组有序的12种螺旋状态,称为多晶型。我们使用纯化的鞭毛蛋白长聚合物,展示了不同多晶型之间可控的、可逆的转变。在用光镊拉动单根细丝时,我们记录细丝的渐进转变,并测量力-伸长曲线。正常和卷曲的多晶型细丝均以3.5皮牛×微米²的弯曲刚度弹性拉伸。在4-7皮牛或3-5皮牛的力阈值下(分别对应正常和卷曲形式),一部分细丝会突然转变为下一个更长的多晶型。这种转变不是确定性的,因为每次拉动时力和转变量都有所不同。此外,力高度依赖于拉伸速率,这表明多晶型转变与活化能有关。