Suppr超能文献

在粘性流体中旋转细菌鞭毛的多晶型转变建模。

Modeling polymorphic transformation of rotating bacterial flagella in a viscous fluid.

机构信息

Department of Mathematical Sciences, University of Cincinnati, 4199 French Hall West, Cincinnati, Ohio 45221, USA.

National Institute for Mathematical Sciences, KT Daeduk 2 Research Center, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-811, Republic of Korea.

出版信息

Phys Rev E. 2017 Jun;95(6-1):063106. doi: 10.1103/PhysRevE.95.063106. Epub 2017 Jun 14.

Abstract

The helical flagella that are attached to the cell body of bacteria such as Escherichia coli and Salmonella typhimurium allow the cell to swim in a fluid environment. These flagella are capable of polymorphic transformation in that they take on various helical shapes that differ in helical pitch, radius, and chirality. We present a mathematical model of a single flagellum described by Kirchhoff rod theory that is immersed in a fluid governed by Stokes equations. We perform numerical simulations to demonstrate two mechanisms by which polymorphic transformation can occur, as observed in experiments. First, we consider a flagellar filament attached to a rotary motor in which transformations are triggered by a reversal of the direction of motor rotation [L. Turner et al., J. Bacteriol. 182, 2793 (2000)10.1128/JB.182.10.2793-2801.2000]. We then consider a filament that is fixed on one end and immersed in an external fluid flow [H. Hotani, J. Mol. Biol. 156, 791 (1982)10.1016/0022-2836(82)90142-5]. The detailed dynamics of the helical flagellum interacting with a viscous fluid is discussed and comparisons with experimental and theoretical results are provided.

摘要

螺旋菌鞭毛附着在细菌的细胞体上,如大肠杆菌和鼠伤寒沙门氏菌,使细胞能够在液体环境中游动。这些鞭毛能够进行多态转化,即它们呈现出不同的螺旋形状,在螺旋间距、半径和手性上有所不同。我们提出了一个由 Kirchhoff 杆理论描述的单鞭毛的数学模型,该模型沉浸在由 Stokes 方程控制的流体中。我们进行数值模拟,以演示两种实验中观察到的多态转化机制。首先,我们考虑一个附着在旋转电机上的鞭毛丝,其中通过电机旋转方向的反转来触发转化[L. Turner 等人,J. Bacteriol. 182, 2793 (2000)10.1128/JB.182.10.2793-2801.2000]。然后,我们考虑一个固定在一端并沉浸在外部流体流中的丝[H. Hotani, J. Mol. Biol. 156, 791 (1982)10.1016/0022-2836(82)90142-5]。讨论了螺旋菌鞭毛与粘性流体相互作用的详细动力学,并提供了与实验和理论结果的比较。

相似文献

2
Instabilities of a rotating helical rod in a viscous fluid.粘性流体中旋转螺旋杆的不稳定性。
Phys Rev E. 2017 Feb;95(2-1):022410. doi: 10.1103/PhysRevE.95.022410. Epub 2017 Feb 21.
3
Fluid-mechanical interaction of flexible bacterial flagella by the immersed boundary method.基于浸入边界法的柔性细菌鞭毛的流体力学相互作用
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 2):036307. doi: 10.1103/PhysRevE.85.036307. Epub 2012 Mar 19.
4
Periodic chirality transformations propagating on bacterial flagella.在细菌鞭毛上传播的周期性手性转变。
Phys Rev Lett. 2002 Sep 9;89(11):118102. doi: 10.1103/PhysRevLett.89.118102. Epub 2002 Aug 23.
5
Motor-driven bacterial flagella and buckling instabilities.电动细菌鞭毛与屈曲不稳定性
Eur Phys J E Soft Matter. 2012 Feb;35(2):15. doi: 10.1140/epje/i2012-12015-0. Epub 2012 Feb 29.
6
A study of bacterial flagellar bundling.一项关于细菌鞭毛成束的研究。
Bull Math Biol. 2005 Jan;67(1):137-68. doi: 10.1016/j.bulm.2004.06.006.
7
A 3D motile rod-shaped monotrichous bacterial model.一种三维运动的杆状单端鞭毛细菌模型。
Bull Math Biol. 2009 Jul;71(5):1228-63. doi: 10.1007/s11538-009-9400-3. Epub 2009 Apr 3.
9
Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum.旋转细菌鞭毛的粗粒度分子动力学模拟。
Biophys J. 2006 Dec 15;91(12):4589-97. doi: 10.1529/biophysj.106.093443. Epub 2006 Sep 22.
10
Propulsion of microorganisms by a helical flagellum.螺旋鞭毛推动微生物。
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):E338-47. doi: 10.1073/pnas.1219831110. Epub 2013 Jan 14.

引用本文的文献

本文引用的文献

1
Dynamics of a bacterial flagellum under reverse rotation.反向旋转细菌鞭毛的动力学。
Soft Matter. 2016 Jul 7;12(25):5621-9. doi: 10.1039/c6sm00443a. Epub 2016 Jun 6.
2
Rotation-induced polymorphic transitions in bacterial flagella.细菌鞭毛中旋转诱导的多晶型转变。
Phys Rev Lett. 2013 Apr 12;110(15):158104. doi: 10.1103/PhysRevLett.110.158104. Epub 2013 Apr 9.
3
Propulsion of microorganisms by a helical flagellum.螺旋鞭毛推动微生物。
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):E338-47. doi: 10.1073/pnas.1219831110. Epub 2013 Jan 14.
4
Fluid-mechanical interaction of flexible bacterial flagella by the immersed boundary method.基于浸入边界法的柔性细菌鞭毛的流体力学相互作用
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 2):036307. doi: 10.1103/PhysRevE.85.036307. Epub 2012 Mar 19.
6
Force-extension curves of bacterial flagella.细菌鞭毛的力-伸长曲线。
Eur Phys J E Soft Matter. 2010 Nov;33(3):259-71. doi: 10.1140/epje/i2010-10664-5. Epub 2010 Nov 4.
8
A 3D motile rod-shaped monotrichous bacterial model.一种三维运动的杆状单端鞭毛细菌模型。
Bull Math Biol. 2009 Jul;71(5):1228-63. doi: 10.1007/s11538-009-9400-3. Epub 2009 Apr 3.
10
On torque and tumbling in swimming Escherichia coli.关于游泳大肠杆菌中的扭矩和翻滚
J Bacteriol. 2007 Mar;189(5):1756-64. doi: 10.1128/JB.01501-06. Epub 2006 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验