Suppr超能文献

通过对猕猴V1区进行微刺激诱导光幻视

Phosphene induction by microstimulation of macaque V1.

作者信息

Tehovnik Edward J, Slocum Warren M

机构信息

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.

出版信息

Brain Res Rev. 2007 Feb;53(2):337-43. doi: 10.1016/j.brainresrev.2006.11.001. Epub 2006 Dec 14.

Abstract

Non-human primates are being used to develop a cortical visual prosthesis for the blind. We use the properties of electrical microstimulation of striate cortex (area V1) of macaque monkeys to make inferences about phosphene induction. Our analysis is based on well-established properties of V1: retino-cortical magnification factor, receptive-field size, and the characteristics of hypercolumns. We argue that phosphene size is dependent on the amount of current delivered to V1 and on the retino-cortical magnification factor. We suggest that to improve the correspondence between the site of stimulation within V1 and the visual field location of an elicited phosphene both eyes must be put under experimental control given that phosphene location is retinocentric and given that the vergence angle between the eyes might affect the position of a phosphene in depth. Knowing how electrical microstimulation interacts with cortical tissue to evoke percepts in behaving macaque monkeys is fundamental to the establishment of an effective cortical visual prosthesis for the blind.

摘要

非人类灵长类动物正被用于为盲人开发一种皮层视觉假体。我们利用对猕猴纹状皮层(V1区)进行电微刺激的特性来推断光幻视的诱发情况。我们的分析基于V1区已确立的特性:视网膜皮层放大因子、感受野大小以及超柱的特征。我们认为光幻视的大小取决于传递到V1区的电流量以及视网膜皮层放大因子。我们建议,鉴于光幻视的位置是以视网膜为中心的,并且双眼之间的辐辏角度可能会影响光幻视在深度上的位置,为了改善V1区内刺激部位与诱发光幻视的视野位置之间的对应关系,必须对双眼进行实验控制。了解电微刺激如何与皮层组织相互作用以在行为猕猴中诱发感知,对于为盲人建立有效的皮层视觉假体至关重要。

相似文献

1
Phosphene induction by microstimulation of macaque V1.
Brain Res Rev. 2007 Feb;53(2):337-43. doi: 10.1016/j.brainresrev.2006.11.001. Epub 2006 Dec 14.
2
Phosphene induction and the generation of saccadic eye movements by striate cortex.
J Neurophysiol. 2005 Jan;93(1):1-19. doi: 10.1152/jn.00736.2004. Epub 2004 Sep 15.
3
Microstimulation of visual cortex to restore vision.
Prog Brain Res. 2009;175:347-75. doi: 10.1016/S0079-6123(09)17524-6.
4
Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
J Neurosci. 2017 Jul 26;37(30):7188-7197. doi: 10.1523/JNEUROSCI.2896-16.2017. Epub 2017 Jun 26.
5
Delaying visually guided saccades by microstimulation of macaque V1: spatial properties of delay fields.
Eur J Neurosci. 2005 Nov;22(10):2635-43. doi: 10.1111/j.1460-9568.2005.04454.x.
6
Microstimulation of V1 delays visually guided saccades: a parametric evaluation of delay fields.
Exp Brain Res. 2007 Jan;176(3):413-24. doi: 10.1007/s00221-006-0625-1. Epub 2006 Aug 1.
7
Microstimulation of V1 input layers disrupts the selection and detection of visual targets by monkeys.
Eur J Neurosci. 2004 Sep;20(6):1674-80. doi: 10.1111/j.1460-9568.2004.03608.x.
8
What delay fields tell us about striate cortex.
J Neurophysiol. 2007 Aug;98(2):559-76. doi: 10.1152/jn.00285.2007. Epub 2007 Jun 13.
9
Microstimulation of V1 affects the detection of visual targets: manipulation of target contrast.
Exp Brain Res. 2005 Sep;165(3):305-14. doi: 10.1007/s00221-005-2306-x. Epub 2005 Jun 8.
10
Differential effects of laminar stimulation of V1 cortex on target selection by macaque monkeys.
Eur J Neurosci. 2002 Aug;16(4):751-60. doi: 10.1046/j.1460-9568.2002.02123.x.

引用本文的文献

1
A novel interface for cortical columnar neuromodulation with multipoint infrared neural stimulation.
Nat Commun. 2024 Aug 2;15(1):6528. doi: 10.1038/s41467-024-50375-0.
3
Consciousness and complexity: a consilience of evidence.
Neurosci Conscious. 2021 Aug 30;2021(2):niab023. doi: 10.1093/nc/niab023. eCollection 2021.
6
7
Modulating Brain Activity with Invasive Brain-Computer Interface: A Narrative Review.
Brain Sci. 2023 Jan 12;13(1):134. doi: 10.3390/brainsci13010134.
8
Vision Restoration by Optogenetic Therapy and Developments Toward Sonogenetic Therapy.
Transl Vis Sci Technol. 2022 Jan 3;11(1):18. doi: 10.1167/tvst.11.1.18.
9
Neurophysiological considerations for visual implants.
Brain Struct Funct. 2022 May;227(4):1523-1543. doi: 10.1007/s00429-021-02417-2. Epub 2021 Nov 13.
10
Visuomotor control in mice and primates.
Neurosci Biobehav Rev. 2021 Nov;130:185-200. doi: 10.1016/j.neubiorev.2021.08.009. Epub 2021 Aug 17.

本文引用的文献

1
Microstimulation of V1 delays visually guided saccades: a parametric evaluation of delay fields.
Exp Brain Res. 2007 Jan;176(3):413-24. doi: 10.1007/s00221-006-0625-1. Epub 2006 Aug 1.
2
Direct and indirect activation of cortical neurons by electrical microstimulation.
J Neurophysiol. 2006 Aug;96(2):512-21. doi: 10.1152/jn.00126.2006.
3
Delaying visually guided saccades by microstimulation of macaque V1: spatial properties of delay fields.
Eur J Neurosci. 2005 Nov;22(10):2635-43. doi: 10.1111/j.1460-9568.2005.04454.x.
4
Psychophysics of electrical stimulation of striate cortex in macaques.
J Neurophysiol. 2005 Nov;94(5):3430-42. doi: 10.1152/jn.00406.2005. Epub 2005 Aug 3.
5
Laminar variation in threshold for detection of electrical excitation of striate cortex by macaques.
J Neurophysiol. 2005 Nov;94(5):3443-50. doi: 10.1152/jn.00407.2005. Epub 2005 Aug 3.
6
Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation.
J Assoc Res Otolaryngol. 2004 Sep;5(3):305-22. doi: 10.1007/s10162-004-4026-5. Epub 2004 Aug 12.
7
Phosphene induction and the generation of saccadic eye movements by striate cortex.
J Neurophysiol. 2005 Jan;93(1):1-19. doi: 10.1152/jn.00736.2004. Epub 2004 Sep 15.
8
Microstimulation of V1 input layers disrupts the selection and detection of visual targets by monkeys.
Eur J Neurosci. 2004 Sep;20(6):1674-80. doi: 10.1111/j.1460-9568.2004.03608.x.
9
Visuotopic mapping through a multichannel stimulating implant in primate V1.
J Neurophysiol. 2005 Mar;93(3):1659-70. doi: 10.1152/jn.01213.2003. Epub 2004 Sep 1.
10
Microstimulation of V1 delays the execution of visually guided saccades.
Eur J Neurosci. 2004 Jul;20(1):264-72. doi: 10.1111/j.1460-9568.2004.03480.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验