Suppr超能文献

用于通过基于成本的度量和比对来比较多神经元放电序列的动态规划算法。

Dynamic programming algorithms for comparing multineuronal spike trains via cost-based metrics and alignments.

作者信息

Victor Jonathan D, Goldberg David H, Gardner Daniel

机构信息

Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 1300 York Avenue, New York City, NY 10021, USA.

出版信息

J Neurosci Methods. 2007 Apr 15;161(2):351-60. doi: 10.1016/j.jneumeth.2006.11.001. Epub 2006 Dec 15.

Abstract

Cost-based metrics formalize notions of distance, or dissimilarity, between two spike trains, and are applicable to single- and multineuronal responses. As such, these metrics have been used to characterize neural variability and neural coding. By examining the structure of an efficient algorithm [Aronov D, 2003. Fast algorithm for the metric-space analysis of simultaneous responses of multiple single neurons. J Neurosci Methods 124(2), 175-79] implementing a metric for multineuronal responses, we determine criteria for its generalization, and identify additional efficiencies that are applicable when related dissimilarity measures are computed in parallel. The generalized algorithm provides the means to test a wide range of coding hypotheses.

摘要

基于成本的度量标准将两个脉冲序列之间的距离或不相似性概念形式化,并且适用于单神经元和多神经元反应。因此,这些度量标准已被用于表征神经变异性和神经编码。通过研究一种有效算法的结构 [阿罗诺夫 D,2003 年。用于多个单个神经元同步反应的度量空间分析的快速算法。《神经科学方法杂志》124(2),175 - 79],该算法实现了一种用于多神经元反应的度量标准,我们确定了其泛化的标准,并识别出在并行计算相关不相似性度量时适用的其他效率。这种泛化算法提供了测试广泛编码假设的方法。

相似文献

3
Spike train metrics.脉冲序列指标
Curr Opin Neurobiol. 2005 Oct;15(5):585-92. doi: 10.1016/j.conb.2005.08.002.
5
Neural decoding with kernel-based metric learning.基于核度量学习的神经解码
Neural Comput. 2014 Jun;26(6):1080-107. doi: 10.1162/NECO_a_00591. Epub 2014 Mar 31.
7
A new multineuron spike train metric.一种新的多神经元尖峰序列度量指标。
Neural Comput. 2008 Jun;20(6):1495-511. doi: 10.1162/neco.2007.10-06-350.
9
Optimization of population decoding with distance metrics.基于距离测度的群体解码优化。
Neural Netw. 2010 Aug;23(6):728-32. doi: 10.1016/j.neunet.2010.04.007. Epub 2010 May 5.

本文引用的文献

1
Spike train metrics.脉冲序列指标
Curr Opin Neurobiol. 2005 Oct;15(5):585-92. doi: 10.1016/j.conb.2005.08.002.
3
Non-Euclidean properties of spike train metric spaces.脉冲序列度量空间的非欧几里得性质
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 1):061905. doi: 10.1103/PhysRevE.69.061905. Epub 2004 Jun 2.
4
Maximum likelihood difference scaling.最大似然差异标度法
J Vis. 2003;3(8):573-85. doi: 10.1167/3.8.5. Epub 2003 Oct 7.
5
From another angle: Differences in cortical coding between fine and coarse discrimination of orientation.
J Neurophysiol. 2004 Mar;91(3):1193-202. doi: 10.1152/jn.00829.2003. Epub 2003 Nov 12.
6
Chronic, multisite, multielectrode recordings in macaque monkeys.猕猴的慢性、多部位、多电极记录
Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11041-6. doi: 10.1073/pnas.1934665100. Epub 2003 Sep 5.
8
Neural coding of spatial phase in V1 of the macaque monkey.猕猴初级视觉皮层(V1)中空间相位的神经编码
J Neurophysiol. 2003 Jun;89(6):3304-27. doi: 10.1152/jn.00826.2002. Epub 2003 Jan 29.
10
Reduced space sequence alignment.简化空间序列比对
Comput Appl Biosci. 1997 Feb;13(1):45-53. doi: 10.1093/bioinformatics/13.1.45.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验