Suppr超能文献

用于列克西斯图的年龄-时期-队列模型。

Age-period-cohort models for the Lexis diagram.

作者信息

Carstensen B

机构信息

Steno Diabetes Center, Niels Steensens Vej 2, DK 2820 Gentofte, Denmark.

出版信息

Stat Med. 2007 Jul 10;26(15):3018-45. doi: 10.1002/sim.2764.

Abstract

Analysis of rates from disease registers are often reported inadequately because of too coarse tabulation of data and because of confusion about the mechanics of the age-period-cohort model used for analysis. Rates should be considered as observations in a Lexis diagram, and tabulation a necessary reduction of data, which should be as small as possible, and age, period and cohort should be treated as continuous variables. Reporting should include the absolute level of the rates as part of the age-effects. This paper gives a guide to analysis of rates from a Lexis diagram by the age-period-cohort model. Three aspects are considered separately: (1) tabulation of cases and person-years; (2) modelling of age, period and cohort effects; and (3) parametrization and reporting of the estimated effects. It is argued that most of the confusion in the literature comes from failure to make a clear distinction between these three aspects. A set of recommendations for the practitioner is given and a package for R that implements the recommendations is introduced.

摘要

由于数据表格过于粗略,以及用于分析的年龄-时期-队列模型的机制存在混淆,疾病登记率的分析报告往往不够充分。率应被视为列克西斯图中的观测值,而表格是对数据的必要简化,应尽可能简化,年龄、时期和队列应被视为连续变量。报告应包括率的绝对水平作为年龄效应的一部分。本文给出了一个通过年龄-时期-队列模型对列克西斯图中的率进行分析的指南。分别考虑三个方面:(1)病例和人年的表格化;(2)年龄、时期和队列效应的建模;(3)估计效应的参数化和报告。有人认为,文献中的大多数混淆源于未能明确区分这三个方面。给出了一套针对从业者的建议,并介绍了一个在R语言中实现这些建议的软件包。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验