Suppr超能文献

在关联研究中通过遗传背景相互作用鉴定数量性状基因座。

Identifying quantitative trait locus by genetic background interactions in association studies.

作者信息

Jannink Jean-Luc

机构信息

Department of Agronomy, Iowa State University, Ames, Iowa 50011-1010, USA.

出版信息

Genetics. 2007 May;176(1):553-61. doi: 10.1534/genetics.106.062992. Epub 2006 Dec 18.

Abstract

Association studies are designed to identify main effects of alleles across a potentially wide range of genetic backgrounds. To control for spurious associations, effects of the genetic background itself are often incorporated into the linear model, either in the form of subpopulation effects in the case of structure or in the form of genetic relationship matrices in the case of complex pedigrees. In this context epistatic interactions between loci can be captured as an interaction effect between the associated locus and the genetic background. In this study I developed genetic and statistical models to tie the locus by genetic background interaction idea back to more standard concepts of epistasis when genetic background is modeled using an additive relationship matrix. I also simulated epistatic interactions in four-generation randomly mating pedigrees and evaluated the ability of the statistical models to identify when a biallelic associated locus was epistatic to other loci. Under additive-by-additive epistasis, when interaction effects of the associated locus were quite large (explaining 20% of the phenotypic variance), epistasis was detected in 79% of pedigrees containing 320 individuals. The epistatic model also predicted the genotypic value of progeny better than a standard additive model in 78% of simulations. When interaction effects were smaller (although still fairly large, explaining 5% of the phenotypic variance), epistasis was detected in only 9% of pedigrees containing 320 individuals and the epistatic and additive models were equally effective at predicting the genotypic values of progeny. Epistasis was detected with the same power whether the overall epistatic effect was the result of a single pairwise interaction or the sum of nine pairwise interactions, each generating one ninth of the epistatic variance. The power to detect epistasis was highest (94%) at low QTL minor allele frequency, fell to a minimum (60%) at minor allele frequency of about 0.2, and then plateaued at about 80% as alleles reached intermediate frequencies. The power to detect epistasis declined when the linkage disequilibrium between the DNA marker and the functional polymorphism was not complete.

摘要

关联研究旨在识别在潜在广泛遗传背景下等位基因的主效应。为了控制虚假关联,遗传背景本身的效应通常会以线性模型的形式纳入,在存在结构的情况下以亚群体效应的形式,或者在复杂家系的情况下以遗传关系矩阵的形式。在这种情况下,基因座之间的上位性相互作用可以作为相关基因座与遗传背景之间的相互作用效应来捕捉。在本研究中,我开发了遗传和统计模型,当使用加性关系矩阵对遗传背景进行建模时,将基因座与遗传背景相互作用的概念与更标准的上位性概念联系起来。我还在四代随机交配家系中模拟了上位性相互作用,并评估了统计模型识别双等位基因相关基因座与其他基因座之间上位性的能力。在加性×加性上位性情况下,当相关基因座的相互作用效应相当大(解释20%的表型变异)时,在包含320个个体的79%的家系中检测到上位性。在78%的模拟中,上位性模型比标准加性模型能更好地预测后代的基因型值。当相互作用效应较小时(尽管仍然相当大,解释5%的表型变异),在包含320个个体的家系中仅9%检测到上位性,并且上位性模型和加性模型在预测后代基因型值方面同样有效。无论总体上位性效应是单个成对相互作用的结果还是九个成对相互作用之和(每个相互作用产生九分之一的上位性变异),检测上位性的能力相同。在低QTL小等位基因频率时检测上位性的能力最高(94%),在小等位基因频率约为0.2时降至最低(60%),然后随着等位基因频率达到中等水平稳定在约80%。当DNA标记与功能多态性之间的连锁不平衡不完全时,检测上位性的能力下降。

相似文献

1
Identifying quantitative trait locus by genetic background interactions in association studies.
Genetics. 2007 May;176(1):553-61. doi: 10.1534/genetics.106.062992. Epub 2006 Dec 18.
2
Epistasis in quantitative trait locus linkage analysis: interaction or main effect?
Behav Genet. 2004 Mar;34(2):143-52. doi: 10.1023/B:BEGE.0000013728.96408.f9.
4
Mapping epistatic quantitative trait loci.
BMC Genet. 2014 Nov 4;15:112. doi: 10.1186/s12863-014-0112-9.
6
Using known QTLs to detect directional epistatic interactions.
Genet Res (Camb). 2012 Feb;94(1):39-48. doi: 10.1017/S0016672312000043.
8
A Genome-Wide Association Analysis Reveals Epistatic Cancellation of Additive Genetic Variance for Root Length in Arabidopsis thaliana.
PLoS Genet. 2015 Sep 23;11(9):e1005541. doi: 10.1371/journal.pgen.1005541. eCollection 2015.
9
Effects of genetic drift on variance components under a general model of epistasis.
Evolution. 2004 Oct;58(10):2111-32. doi: 10.1111/j.0014-3820.2004.tb01591.x.
10
Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits.
PLoS Genet. 2017 Jul 26;13(7):e1006869. doi: 10.1371/journal.pgen.1006869. eCollection 2017 Jul.

引用本文的文献

1
Drought-tolerant wheat for enhancing global food security.
Funct Integr Genomics. 2024 Nov 13;24(6):212. doi: 10.1007/s10142-024-01488-8.
2
Genome-Wide Mapping of Quantitative Trait Loci for Yield-Attributing Traits of Peanut.
Genes (Basel). 2024 Jan 23;15(2):140. doi: 10.3390/genes15020140.
4
Factorizing polygenic epistasis improves prediction and uncovers biological pathways in complex traits.
Am J Hum Genet. 2023 Nov 2;110(11):1875-1887. doi: 10.1016/j.ajhg.2023.10.002.
6
A model and test for coordinated polygenic epistasis in complex traits.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.1922305118.
8
Association analysis of loci implied in "buffering" epistasis.
J Anim Sci. 2020 Mar 1;98(3). doi: 10.1093/jas/skaa045.
10
Metabolome Analysis of Multi-Connected Biparental Chromosome Segment Substitution Line Populations.
Plant Physiol. 2018 Oct;178(2):612-625. doi: 10.1104/pp.18.00490. Epub 2018 Aug 23.

本文引用的文献

1
EPISTASIS AS A SOURCE OF INCREASED ADDITIVE GENETIC VARIANCE AT POPULATION BOTTLENECKS.
Evolution. 1996 Jun;50(3):1042-1051. doi: 10.1111/j.1558-5646.1996.tb02345.x.
2
EPISTASIS AND THE EFFECT OF FOUNDER EVENTS ON THE ADDITIVE GENETIC VARIANCE.
Evolution. 1988 May;42(3):441-454. doi: 10.1111/j.1558-5646.1988.tb04151.x.
4
Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize.
Theor Appl Genet. 2006 Jul;113(2):206-24. doi: 10.1007/s00122-006-0287-1. Epub 2006 May 20.
5
Epistasis and the release of genetic variation during long-term selection.
Nat Genet. 2006 Apr;38(4):418-20. doi: 10.1038/ng1761. Epub 2006 Mar 12.
6
Mixed-model QTL mapping for kernel hardness and dough strength in bread wheat.
Theor Appl Genet. 2006 Mar;112(5):885-90. doi: 10.1007/s00122-005-0190-1. Epub 2006 Jan 6.
7
A unified mixed-model method for association mapping that accounts for multiple levels of relatedness.
Nat Genet. 2006 Feb;38(2):203-8. doi: 10.1038/ng1702. Epub 2005 Dec 25.
8
Efficiency and power in genetic association studies.
Nat Genet. 2005 Nov;37(11):1217-23. doi: 10.1038/ng1669. Epub 2005 Oct 23.
9
Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars.
Genetics. 2006 Feb;172(2):1165-77. doi: 10.1534/genetics.105.044586. Epub 2005 Aug 3.
10
Epistasis and balanced polymorphism influencing complex trait variation.
Nature. 2005 May 5;435(7038):95-8. doi: 10.1038/nature03480.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验