Jain Kavita, Krug Joachim
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel.
Genetics. 2007 Mar;175(3):1275-88. doi: 10.1534/genetics.106.067165. Epub 2006 Dec 18.
We study the adaptation dynamics of an initially maladapted asexual population with genotypes represented by binary sequences of length L. The population evolves in a maximally rugged fitness landscape with a large number of local optima. We find that whether the evolutionary trajectory is deterministic or stochastic depends on the effective mutational distance d(eff) up to which the population can spread in genotype space. For d(eff) = L, the deterministic quasi-species theory operates while for d(eff) < 1, the evolution is completely stochastic. Between these two limiting cases, the dynamics are described by a local quasi-species theory below a crossover time T(x) while above T(x) the population gets trapped at a local fitness peak and manages to find a better peak via either stochastic tunneling or double mutations. In the stochastic regime d(eff) < 1, we identify two subregimes associated with clonal interference and uphill adaptive walks, respectively. We argue that our findings are relevant to the interpretation of evolution experiments with microbial populations.
我们研究了一个初始适应不良的无性种群的适应动力学,其基因型由长度为L的二进制序列表示。该种群在具有大量局部最优解的极度崎岖的适应度景观中进化。我们发现,进化轨迹是确定性的还是随机性的,取决于种群在基因型空间中能够扩散的有效突变距离d(eff)。对于d(eff) = L,确定性准物种理论起作用,而对于d(eff) < 1,进化是完全随机的。在这两种极限情况之间,动力学在交叉时间T(x)以下由局部准物种理论描述,而在T(x)以上,种群被困在局部适应度峰值,并通过随机隧穿或双突变设法找到更好的峰值。在随机区域d(eff) < 1中,我们分别识别出与克隆干扰和上坡适应性行走相关的两个子区域。我们认为我们的发现与微生物种群进化实验的解释相关。