Suppr超能文献

使用微通道芯片制造含氨苄青霉素的单分散壳聚糖微粒。

Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip.

作者信息

Yang Chih-Hui, Huang Keng-Shiang, Chang Jia-Yaw

机构信息

Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan, R.O.C.

出版信息

Biomed Microdevices. 2007 Apr;9(2):253-9. doi: 10.1007/s10544-006-9029-z.

Abstract

The purpose of this study was using a developed microfluidic chip to prepare size-controlled monodisperse chitosan microparticles encapsulating ampicillin. Our strategy is that a chitosan aqueous solution (the disperse phase) is fed into the microfluidic chip equipped with a cross-junction microchannel, and is sheared by the viscous oil flows (the continuous phase) to form monodisperse semi-product, chitosan emulsions. These fine emulsions are then gelled into stability upon gelation by injection of copper sulfate solution at the terminal microchannel of the microfluidic chip, and finally the uniform chitosan microparticles are formed in an efficient manner. The proposed chip is fabricated by a CO(2) laser machine on a conventional poly methyl methacrylate (PMMA) substrate. This microfluidic chip has four inlet ports, one cross-channel and one outlet port. We have demonstrated that one can control the size of chitosan microparticles from 100 to 800 microm in diameter (with a variation less than 5%) by altering the relative sheath/sample flow rate ratio. Experimental data showed that when given a steady continuous phase (oil flow), the emulsion size increases with the increase in average velocity of the dispersed phase flow (sample flow). In addition, the release of the model drug (ampicillin) from these microspheres is proved to be once-daily for clinical application. We also revealed that appropriate particle sizes for different release patterns are predictable, enabling better applications of chitosan as a drug carrier.

摘要

本研究的目的是使用一种已开发的微流控芯片来制备尺寸可控的、包封氨苄西林的单分散壳聚糖微粒。我们的策略是将壳聚糖水溶液(分散相)注入配备有交叉连接微通道的微流控芯片中,并通过粘性油流(连续相)进行剪切,以形成单分散的半成品——壳聚糖乳液。然后,通过在微流控芯片的末端微通道处注入硫酸铜溶液,使这些精细乳液在凝胶化时形成稳定状态,最终高效地形成均匀的壳聚糖微粒。所提出的芯片是通过二氧化碳激光机在传统的聚甲基丙烯酸甲酯(PMMA)基板上制造的。这种微流控芯片有四个入口、一个交叉通道和一个出口。我们已经证明,通过改变相对鞘流/样品流速比,可以将壳聚糖微粒的直径控制在100至800微米之间(变化小于5%)。实验数据表明,在给定稳定的连续相(油流)时,乳液尺寸会随着分散相流(样品流)平均速度的增加而增大。此外,这些微球中模型药物(氨苄西林)的释放被证明适合临床应用的每日一次给药方式。我们还发现,不同释放模式的合适粒径是可预测的,这使得壳聚糖作为药物载体能有更好的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验