Cottin F, Leprêtre P-M, Lopes P, Papelier Y, Médigue C, Billat V
Laboratory of Exercise Physiology (LEPH), University of Evry, Cedex, France.
Int J Sports Med. 2006 Dec;27(12):959-67. doi: 10.1055/s-2006-923849.
The purpose of this study was to implement a new method for assessing the ventilatory thresholds from heart rate variability (HRV) analysis. ECG, VO2, VCO2, and VE were collected from eleven well-trained subjects during an incremental exhaustive test performed on a cycle ergometer. The "Short-Term Fourier Transform" analysis was applied to RR time series to compute the high frequency HRV energy (HF, frequency range: 0.15 - 2 Hz) and HF frequency peak (fHF) vs. power stages. For all subjects, visual examination of ventilatory equivalents, fHF, and instantaneous HF energy multiplied by fHF (HF.fHF) showed two nonlinear increases. The first nonlinear increase corresponded to the first ventilatory threshold (VT1) and was associated with the first HF threshold (T(RSA1) from fHF and HFT1 from HF.fHF detection). The second nonlinear increase represented the second ventilatory threshold (VT2) and was associated with the second HF threshold (T(RSA2) from fHF and HFT2 from HF.fHF detection). HFT1 , T(RSA1), HFT2, and T(RSA2) were, respectively, not significantly different from VT1 (VT1 = 219 +/- 45 vs. HFT1 = 220 +/- 48 W, p = 0.975; VT1 vs. T(RSA1) = 213 +/- 56 W, p = 0.662) and VT2 (VT2 = 293 +/- 45 vs. HFT2 = 294 +/- - 48 W, p = 0.956; vs. T(RSA2) = 300 +/- 58 W, p = 0.445). In addition, when expressed as a function of power, HFT1, T(RSA1), HFT2, and T(RSA2) were respectively correlated with VT1 (with HFT1 r2 = 0.94, p < 0.001; with T(RSA1) r2 = 0.48, p < 0.05) and VT2 (with HFT2 r2 = 0.97, p < 0.001; with T(RSA2 )r2 = 0.79, p < 0.001). This study confirms that ventilatory thresholds can be determined from RR time series using HRV time-frequency analysis in healthy well-trained subjects. In addition it shows that HF.fHF provides a more reliable and accurate index than fHF alone for this assessment.
本研究的目的是实施一种通过心率变异性(HRV)分析评估通气阈值的新方法。在对11名训练有素的受试者进行的递增力竭测试中,使用自行车测力计收集心电图(ECG)、耗氧量(VO2)、二氧化碳排出量(VCO2)和每分钟通气量(VE)。对RR时间序列应用“短期傅里叶变换”分析,以计算高频HRV能量(HF,频率范围:0.15 - 2Hz)以及HF频率峰值(fHF)与功率阶段的关系。对于所有受试者,通过目视检查通气当量、fHF以及瞬时HF能量乘以fHF(HF.fHF),发现有两个非线性增加。第一个非线性增加对应于第一通气阈值(VT1),并与第一HF阈值相关(fHF检测中的T(RSA1)和HF.fHF检测中的HFT1)。第二个非线性增加代表第二通气阈值(VT2),并与第二HF阈值相关(fHF检测中的T(RSA2)和HF.fHF检测中的HFT2)。HFT1、T(RSA1)、HFT2和T(RSA2)分别与VT1(VT1 = 219 ± 45 vs. HFT1 = 220 ± 48W,p = 0.975;VT1 vs. T(RSA1) = 213 ± 56W,p = 0.662)和VT2(VT2 = 293 ± 45 vs. HFT2 = 294 ± - 48W,p = 0.956;vs. T(RSA2) = 300 ± 58W,p = 0.445)无显著差异。此外,当表示为功率的函数时,HFT1、T(RSA1)、HFT2和T(RSA2)分别与VT1(HFT1的r2 = 0.94,p < 0.001;T(RSA1)的r2 = 0.48,p < 0.05)和VT2(HFT2的r2 = 0.97,p < 0.001;T(RSA2)的r2 = 0.79,p < 0.001)相关。本研究证实,在健康且训练有素的受试者中,可使用HRV时频分析从RR时间序列确定通气阈值。此外,研究表明,对于此评估,HF.fHF比单独的fHF提供了更可靠和准确的指标。