Govindaiah G, Cox Charles L
Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, USA.
J Neurosci. 2006 Dec 27;26(52):13443-53. doi: 10.1523/JNEUROSCI.3578-06.2006.
Thalamic interneurons and thalamic reticular nucleus (TRN) neurons provide inhibitory innervation of thalamocortical cells that significantly influence thalamic gating. The local interneurons in the dorsal lateral geniculate nucleus (dLGN) give rise to two distinct synaptic outputs: classical axonal and dendrodendritic. Activation of metabotropic glutamate receptors (mGluRs) by agonists or optic tract stimulation increases the output of these presynaptic dendrites leading to increased inhibition of thalamocortical neurons. The present study was aimed to evaluate the actions of specific mGluRs on inhibitory GABA-mediated signaling. We found that the group I mGluR (mGluR(1,5)) agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) or optic tract stimulation produced a robust increase in spontaneous IPSCs (sIPSCs) in thalamocortical neurons that was attenuated by the selective mGluR(5) antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP). In contrast, the group II mGluR (mGluR(2,3)) agonists (2R, 4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) or (2S,2'R,3'R)-2-(2'3'-dicarboxycyclopropyl)glycine (DCG-IV) suppressed the frequency of sIPSCs. In addition, mGluR(1,5) agonist DHPG produced depolarizations and mGluR(2/3) agonists APDC or L-CCG-I [(2S,1'S,2'S)-2-(carboxycyclopropyl)glycine] produced hyperpolarizations in dLGN interneurons. Furthermore, the enhanced sIPSC activity by optic tract stimulation was reduced when paired with corticothalamic fiber stimulation. The present data indicate that activation of specific mGluR subtypes differentially regulates inhibitory activity via different synaptic pathways. Our results suggest that activation of specific mGluR subtypes can upregulate or downregulate inhibitory activity in thalamic relay neurons, and these actions likely shape excitatory synaptic integration and thus regulate information transfer through thalamocortical circuits.
丘脑中间神经元和丘脑网状核(TRN)神经元为丘脑皮质细胞提供抑制性神经支配,这对丘脑门控有显著影响。背外侧膝状核(dLGN)中的局部中间神经元产生两种不同的突触输出:经典轴突输出和树 - 树突触输出。通过激动剂或视束刺激激活代谢型谷氨酸受体(mGluRs)会增加这些突触前树突的输出,从而增强对丘脑皮质神经元的抑制。本研究旨在评估特定mGluRs对抑制性GABA介导信号传导的作用。我们发现,I组mGluR(mGluR(1,5))激动剂(RS)-3,5 -二羟基苯甘氨酸(DHPG)或视束刺激可使丘脑皮质神经元的自发性抑制性突触后电流(sIPSCs)显著增加,而这种增加会被选择性mGluR(5)拮抗剂盐酸2 -甲基 - 6 -(苯乙炔基)吡啶(MPEP)减弱。相反,II组mGluR(mGluR(2,3))激动剂(2R, 4R)-4 -氨基吡咯烷 - 2,4 -二羧酸(APDC)或(2S,2'R,3'R)-2 -(2'3'-二羧基环丙基)甘氨酸(DCG-IV)会抑制sIPSCs的频率。此外,mGluR(1,5)激动剂DHPG可使dLGN中间神经元产生去极化,而mGluR(2/3)激动剂APDC或L - CCG - I [(2S,1'S,2'S)-2 -(羧基环丙基)甘氨酸]可使其产生超极化。此外,当视束刺激与皮质丘脑纤维刺激配对时,视束刺激增强的sIPSC活性会降低。目前的数据表明,特定mGluR亚型的激活通过不同的突触途径差异性地调节抑制活性。我们的结果表明,特定mGluR亚型的激活可以上调或下调丘脑中继神经元的抑制活性,并且这些作用可能塑造兴奋性突触整合,从而调节通过丘脑皮质回路的信息传递。