Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky.
J Neurophysiol. 2020 Aug 1;124(2):404-417. doi: 10.1152/jn.00757.2019. Epub 2020 Jul 1.
The thalamic reticular nucleus (TRN) is a shell-like structure comprised of GABAergic neurons that surrounds the dorsal thalamus. While playing a key role in modulating thalamocortical interactions, TRN inhibition of thalamic activity is often thought of as having an all-or-none impact. Although TRN neurons have a dynamic firing range, it remains unclear how variable rates of TRN activity gate thalamocortical transmission. To address this, we examined the ultrastructural features and functional synaptic properties of the feedback connections in the mouse thalamus between TRN and the dorsal lateral geniculate nucleus (dLGN), the principal relay of retinal signals to visual cortex. Using electron microscopy to identify TRN input to dLGN, we found that TRN terminals formed synapses with non-GABAergic postsynaptic profiles. Compared with other nonretinal terminals in dLGN, those from TRN were relatively large and tended to contact proximal regions of relay cell dendrites. To evoke TRN activity in dLGN, we adopted an optogenetic approach by expressing ChR2, or a variant (ChIEF) in TRN terminals. Both in vitro and in vivo recordings revealed that repetitive stimulation of TRN terminals led to a frequency-dependent inhibition of dLGN activity, with higher rates of stimulation resulting in increasing levels of membrane hyperpolarization and corresponding decreases in spike firing. This relationship suggests that alterations in TRN activity lead to graded changes in relay cell spike firing. The thalamic reticular nucleus (TRN) modulates thalamocortical transmission through inhibition. In mouse, TRN terminals in the dorsal lateral geniculate nucleus (dLGN) form synapses with relay neurons but not interneurons. Stimulation of TRN terminals in dLGN leads to a frequency-dependent form of inhibition, with higher rates of stimulation leading to a greater suppression of spike firing. Thus, TRN inhibition appears more dynamic than previously recognized, having a graded rather than an all-or-none impact on thalamocortical transmission.
丘脑网状核(TRN)是一种由 GABA 能神经元组成的壳状结构,环绕着背侧丘脑。虽然 TRN 在调节丘脑皮质相互作用方面起着关键作用,但 TRN 对丘脑活动的抑制通常被认为具有全有或全无的影响。尽管 TRN 神经元具有动态的放电范围,但尚不清楚 TRN 活动的可变速率如何调节丘脑皮质传递。为了解决这个问题,我们检查了在小鼠丘脑内 TRN 和背外侧膝状体核(dLGN)之间的反馈连接的超微结构特征和功能突触特性,dLGN 是视网膜信号向视觉皮层的主要中继站。使用电子显微镜来识别 TRN 对 dLGN 的输入,我们发现 TRN 末梢与非 GABA 能突触后轮廓形成突触。与 dLGN 中的其他非视网膜末梢相比,来自 TRN 的末梢相对较大,并且倾向于接触中继细胞树突的近端区域。为了在 dLGN 中诱发 TRN 活动,我们采用了一种光遗传学方法,在 TRN 末梢中表达 ChR2 或变体(ChIEF)。体外和体内记录都表明,TRN 末梢的重复刺激导致 dLGN 活动的频率依赖性抑制,刺激率越高,导致膜超极化程度增加,相应地尖峰放电减少。这种关系表明,TRN 活动的改变导致中继细胞尖峰放电的分级变化。丘脑网状核(TRN)通过抑制调节丘脑皮质传递。在小鼠中,背外侧膝状体核(dLGN)中的 TRN 末梢与中继神经元而不是中间神经元形成突触。刺激 dLGN 中的 TRN 末梢会导致一种频率依赖性的抑制形式,较高的刺激率会导致尖峰放电的抑制更大。因此,TRN 抑制似乎比以前认为的更具动态性,对丘脑皮质传递的影响呈分级而不是全有或全无。