Suppr超能文献

人冠状病毒229E在刺突蛋白基因和包膜蛋白基因之间编码一种单一的ORF4蛋白。

Human coronavirus 229E encodes a single ORF4 protein between the spike and the envelope genes.

作者信息

Dijkman Ronald, Jebbink Maarten F, Wilbrink Berry, Pyrc Krzysztof, Zaaijer Hans L, Minor Philip D, Franklin Sally, Berkhout Ben, Thiel Volker, van der Hoek Lia

机构信息

Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.

出版信息

Virol J. 2006 Dec 28;3:106. doi: 10.1186/1743-422X-3-106.

Abstract

BACKGROUND

The genome of coronaviruses contains structural and non-structural genes, including several so-called accessory genes. All group 1b coronaviruses encode a single accessory protein between the spike and envelope genes, except for human coronavirus (HCoV) 229E. The prototype virus has a split gene, encoding the putative ORF4a and ORF4b proteins. To determine whether primary HCoV-229E isolates exhibit this unusual genome organization, we analyzed the ORF4a/b region of five current clinical isolates from The Netherlands and three early isolates collected at the Common Cold Unit (CCU) in Salisbury, UK.

RESULTS

All Dutch isolates were identical in the ORF4a/b region at amino acid level. All CCU isolates are only 98% identical to the Dutch isolates at the nucleotide level, but more closely related to the prototype HCoV-229E (>98%). Remarkably, our analyses revealed that the laboratory adapted, prototype HCoV-229E has a 2-nucleotide deletion in the ORF4a/b region, whereas all clinical isolates carry a single ORF, 660 nt in size, encoding a single protein of 219 amino acids, which is a homologue of the ORF3 proteins encoded by HCoV-NL63 and PEDV.

CONCLUSION

Thus, the genome organization of the group 1b coronaviruses HCoV-NL63, PEDV and HCoV-229E is identical. It is possible that extensive culturing of the HCoV-229E laboratory strain resulted in truncation of ORF4. This may indicate that the protein is not essential in cell culture, but the highly conserved amino acid sequence of the ORF4 protein among clinical isolates suggests that the protein plays an important role in vivo.

摘要

背景

冠状病毒的基因组包含结构基因和非结构基因,其中包括几个所谓的辅助基因。除了人冠状病毒(HCoV)229E外,所有1b组冠状病毒在刺突蛋白基因和包膜蛋白基因之间编码一种单一的辅助蛋白。原型病毒有一个分裂基因,编码假定的ORF4a和ORF4b蛋白。为了确定HCoV-229E的原始分离株是否呈现这种不寻常的基因组结构,我们分析了来自荷兰的五株当前临床分离株以及在英国索尔兹伯里的普通感冒研究中心(CCU)收集的三株早期分离株的ORF4a/b区域。

结果

所有荷兰分离株在ORF4a/b区域的氨基酸水平上是相同的。所有CCU分离株在核苷酸水平上与荷兰分离株只有98%的同一性,但与原型HCoV-229E的关系更为密切(>98%)。值得注意的是,我们的分析表明,实验室适应的原型HCoV-229E在ORF4a/b区域有一个2个核苷酸的缺失,而所有临床分离株都携带一个单一的ORF,大小为660 nt,编码一个由219个氨基酸组成的单一蛋白,该蛋白是HCoV-NL63和猪流行性腹泻病毒(PEDV)编码的ORF3蛋白的同源物。

结论

因此,1b组冠状病毒HCoV-NL63、PEDV和HCoV-229E的基因组结构是相同的。HCoV-229E实验室毒株的广泛传代培养可能导致了ORF4的截短。这可能表明该蛋白在细胞培养中不是必需的,但临床分离株中ORF4蛋白高度保守的氨基酸序列表明该蛋白在体内发挥着重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40fa/1774570/cc46137255bd/1743-422X-3-106-1.jpg

相似文献

3
Evidence for an Ancestral Association of Human Coronavirus 229E with Bats.
J Virol. 2015 Dec;89(23):11858-70. doi: 10.1128/JVI.01755-15. Epub 2015 Sep 16.
4
Clinical Isolates of Human Coronavirus 229E Bypass the Endosome for Cell Entry.
J Virol. 2016 Dec 16;91(1). doi: 10.1128/JVI.01387-16. Print 2017 Jan 1.
6
The first complete genome sequences of clinical isolates of human coronavirus 229E.
Virus Genes. 2012 Dec;45(3):433-9. doi: 10.1007/s11262-012-0807-9. Epub 2012 Aug 25.
8
Coronavirus HKU1 and other coronavirus infections in Hong Kong.
J Clin Microbiol. 2006 Jun;44(6):2063-71. doi: 10.1128/JCM.02614-05.
10
The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production.
Biochim Biophys Acta. 2014 Apr;1838(4):1088-95. doi: 10.1016/j.bbamem.2013.07.025. Epub 2013 Jul 29.

引用本文的文献

1
Automated Annotation and Validation of Human Respiratory Virus Sequences using VADR.
bioRxiv. 2025 Aug 11:2025.08.07.669219. doi: 10.1101/2025.08.07.669219.
2
Changes in ORF4 of HCoV-229E under different culture conditions.
J Gen Virol. 2025 Jul;106(7). doi: 10.1099/jgv.0.002131.
3
Human coronaviruses: activation and antagonism of innate immune responses.
Microbiol Mol Biol Rev. 2025 Mar 27;89(1):e0001623. doi: 10.1128/mmbr.00016-23. Epub 2024 Dec 19.
5
Pulsed-Xenon Ultraviolet Light Highly Inactivates Human Coronaviruses on Solid Surfaces, Particularly SARS-CoV-2.
Int J Environ Res Public Health. 2022 Oct 23;19(21):13780. doi: 10.3390/ijerph192113780.
6
Prevalence of Neutralising Antibodies to HCoV-NL63 in Healthy Adults in Australia.
Viruses. 2021 Aug 16;13(8):1618. doi: 10.3390/v13081618.
7
2020 update on human coronaviruses: One health, one world.
Med Nov Technol Devices. 2020 Dec;8:100043. doi: 10.1016/j.medntd.2020.100043. Epub 2020 Aug 29.
9
Zoonotic origins of human coronaviruses.
Int J Biol Sci. 2020 Mar 15;16(10):1686-1697. doi: 10.7150/ijbs.45472. eCollection 2020.
10
Genetic manipulation of porcine deltacoronavirus reveals insights into NS6 and NS7 functions: a novel strategy for vaccine design.
Emerg Microbes Infect. 2019 Dec 20;9(1):20-31. doi: 10.1080/22221751.2019.1701391. eCollection 2020.

本文引用的文献

1
Mosaic structure of human coronavirus NL63, one thousand years of evolution.
J Mol Biol. 2006 Dec 15;364(5):964-73. doi: 10.1016/j.jmb.2006.09.074. Epub 2006 Oct 3.
2
Prevalence and genetic diversity of coronaviruses in bats from China.
J Virol. 2006 Aug;80(15):7481-90. doi: 10.1128/JVI.00697-06.
3
Inhibition of human coronavirus NL63 infection at early stages of the replication cycle.
Antimicrob Agents Chemother. 2006 Jun;50(6):2000-8. doi: 10.1128/AAC.01598-05.
5
Development of a transgenic mouse model susceptible to human coronavirus 229E.
Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8275-80. doi: 10.1073/pnas.0408589102. Epub 2005 May 26.
8
Severe acute respiratory syndrome coronavirus phylogeny: toward consensus.
J Virol. 2004 Aug;78(15):7863-6. doi: 10.1128/JVI.78.15.7863-7866.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验