Suppr超能文献

视紫红质的分子特性与视杆功能。

Molecular properties of rhodopsin and rod function.

作者信息

Imai Hiroo, Kefalov Vladimir, Sakurai Keisuke, Chisaka Osamu, Ueda Yoshiki, Onishi Akishi, Morizumi Takefumi, Fu Yingbin, Ichikawa Kazuhisa, Nakatani Kei, Honda Yoshihito, Chen Jeannie, Yau King-Wai, Shichida Yoshinori

机构信息

Department of Biophysics, Graduate School of Science, Kyoto University and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kyoto 606-8502, Japan.

出版信息

J Biol Chem. 2007 Mar 2;282(9):6677-84. doi: 10.1074/jbc.M610086200. Epub 2006 Dec 28.

Abstract

Signal transduction in rod cells begins with photon absorption by rhodopsin and leads to the generation of an electrical response. The response profile is determined by the molecular properties of the phototransduction components. To examine how the molecular properties of rhodopsin correlate with the rod-response profile, we have generated a knock-in mouse with rhodopsin replaced by its E122Q mutant, which exhibits properties different from those of wild-type (WT) rhodopsin. Knock-in mouse rods with E122Q rhodopsin exhibited a photosensitivity about 70% of WT. Correspondingly, their single-photon response had an amplitude about 80% of WT, and a rate of decline from peak about 1.3 times of WT. The overall 30% lower photosensitivity of mutant rods can be explained by a lower pigment photosensitivity (0.9) and the smaller single-photon response (0.8). The slower decline of the response, however, did not correlate with the 10-fold shorter lifetime of the meta-II state of E122Q rhodopsin. This shorter lifetime became evident in the recovery phase of rod cells only when arrestin was absent. Simulation analysis of the photoresponse profile indicated that the slower decline and the smaller amplitude of the single-photon response can both be explained by the shift in the meta-I/meta-II equilibrium of E122Q rhodopsin toward meta-I. The difference in meta-III lifetime between WT and E122Q mutant became obvious in the recovery phase of the dark current after moderate photobleaching of rod cells. Thus, the present study clearly reveals how the molecular properties of rhodopsin affect the amplitude, shape, and kinetics of the rod response.

摘要

视杆细胞中的信号转导始于视紫红质对光子的吸收,并导致产生电反应。反应特征由光转导成分的分子特性决定。为了研究视紫红质的分子特性与视杆细胞反应特征之间的关系,我们培育了一种基因敲入小鼠,其中视紫红质被其E122Q突变体取代,该突变体表现出与野生型(WT)视紫红质不同的特性。带有E122Q视紫红质的基因敲入小鼠视杆细胞的光敏性约为野生型的70%。相应地,它们的单光子反应幅度约为野生型的80%,从峰值下降的速率约为野生型的1.3倍。突变体视杆细胞总体上低30%的光敏性可以通过较低的色素光敏性(0.9)和较小的单光子反应(0.8)来解释。然而,反应下降较慢与E122Q视紫红质间Ⅱ态寿命缩短10倍并无关联。只有在没有抑制蛋白时,这种较短的寿命才在视杆细胞的恢复阶段变得明显。光反应特征的模拟分析表明,单光子反应下降较慢和幅度较小都可以通过E122Q视紫红质的间Ⅰ/间Ⅱ平衡向间Ⅰ的转变来解释。在对视杆细胞进行适度光漂白后,野生型和E122Q突变体之间间Ⅲ寿命的差异在暗电流的恢复阶段变得明显。因此,本研究清楚地揭示了视紫红质的分子特性如何影响视杆细胞反应的幅度、形状和动力学。

相似文献

1
Molecular properties of rhodopsin and rod function.
J Biol Chem. 2007 Mar 2;282(9):6677-84. doi: 10.1074/jbc.M610086200. Epub 2006 Dec 28.
2
3
Signaling states of rhodopsin in rod disk membranes lacking transducin βγ-complex.
Invest Ophthalmol Vis Sci. 2012 Mar 9;53(3):1225-33. doi: 10.1167/iovs.11-9350. Print 2012 Mar.
6
Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice.
J Physiol. 2005 Oct 1;568(Pt 1):83-95. doi: 10.1113/jphysiol.2005.091942. Epub 2005 Jul 1.
7
Kinetics of rhodopsin deactivation and its role in regulating recovery and reproducibility of rod photoresponse.
PLoS Comput Biol. 2010 Dec 16;6(12):e1001031. doi: 10.1371/journal.pcbi.1001031.
8
Rhodopsin expression level affects rod outer segment morphology and photoresponse kinetics.
PLoS One. 2012;7(5):e37832. doi: 10.1371/journal.pone.0037832. Epub 2012 May 25.
9
Role of recoverin in rod photoreceptor light adaptation.
J Physiol. 2018 Apr 15;596(8):1513-1526. doi: 10.1113/JP275779. Epub 2018 Mar 5.
10
Investigating the Role of Rhodopsin Mutation in Mouse Rod Photoreceptor Signaling and Survival.
eNeuro. 2023 Mar 7;10(3). doi: 10.1523/ENEURO.0330-22.2023. Print 2023 Mar.

引用本文的文献

1
Modulating signalling lifetime to optimise a prototypical animal opsin for optogenetic applications.
Pflugers Arch. 2023 Dec;475(12):1387-1407. doi: 10.1007/s00424-023-02879-9. Epub 2023 Dec 1.
2
Immediate responses to ambient light reveal distinct subpopulations of suprachiasmatic VIP neurons.
iScience. 2023 Sep 9;26(10):107865. doi: 10.1016/j.isci.2023.107865. eCollection 2023 Oct 20.
3
Ancient whale rhodopsin reconstructs dim-light vision over a major evolutionary transition: Implications for ancestral diving behavior.
Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2118145119. doi: 10.1073/pnas.2118145119. Epub 2022 Jun 27.
4
Creation of photocyclic vertebrate rhodopsin by single amino acid substitution.
Elife. 2022 Feb 24;11:e75979. doi: 10.7554/eLife.75979.
6
Sensory Transduction in Photoreceptors and Olfactory Sensory Neurons: Common Features and Distinct Characteristics.
Front Cell Neurosci. 2021 Oct 8;15:761416. doi: 10.3389/fncel.2021.761416. eCollection 2021.
7
Evolutionary Constraint on Visual and Nonvisual Mammalian Opsins.
J Biol Rhythms. 2021 Apr;36(2):109-126. doi: 10.1177/0748730421999870. Epub 2021 Mar 25.
9
Ground squirrel - A cool model for a bright vision.
Semin Cell Dev Biol. 2020 Oct;106:127-134. doi: 10.1016/j.semcdb.2020.06.005. Epub 2020 Jun 24.
10
Analysis of Adult Neural Retina Extracellular Vesicle Release, RNA Transport and Proteomic Cargo.
Invest Ophthalmol Vis Sci. 2020 Feb 7;61(2):30. doi: 10.1167/iovs.61.2.30.

本文引用的文献

1
Arrestin can act as a regulator of rhodopsin photochemistry.
Vision Res. 2006 Dec;46(27):4532-46. doi: 10.1016/j.visres.2006.08.031. Epub 2006 Oct 27.
3
Molecular properties of rod and cone visual pigments from purified chicken cone pigments to mouse rhodopsin in situ.
Photochem Photobiol Sci. 2005 Sep;4(9):667-74. doi: 10.1039/b416731g. Epub 2005 May 25.
5
Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones.
Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9329-34. doi: 10.1073/pnas.0501875102. Epub 2005 Jun 15.
7
Enhanced shutoff of phototransduction in transgenic mice expressing palmitoylation-deficient rhodopsin.
J Biol Chem. 2005 Jul 1;280(26):24293-300. doi: 10.1074/jbc.M502588200. Epub 2005 Apr 25.
8
Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments.
Biochemistry. 2005 Feb 15;44(6):2208-15. doi: 10.1021/bi047994g.
9
Rhodopsin signaling and organization in heterozygote rhodopsin knockout mice.
J Biol Chem. 2004 Nov 12;279(46):48189-96. doi: 10.1074/jbc.M408362200. Epub 2004 Aug 26.
10
Interaction with transducin depletes metarhodopsin III: a regulated retinal storage in visual signal transduction?
J Biol Chem. 2004 Nov 12;279(46):48112-9. doi: 10.1074/jbc.M406856200. Epub 2004 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验