De Mazière Patrick A, Van Hulle Marc M
K.U.Leuven, Laboratorium voor Neuro- en Psychofysiologie, Herestraat 49-bus 1021, B-3000 Leuven, Belgium.
J Magn Reson. 2007 Mar;185(1):138-51. doi: 10.1016/j.jmr.2006.12.001. Epub 2006 Dec 28.
We present in this article a novel analytical method that enables the application of nonparametric rank-order statistics to fMRI data analysis, since it takes the omnipresent serial correlations (temporal autocorrelations) properly into account. Comparative simulations, using the common General Linear Model and the permutation test, confirm the validity and usefulness of our approach. Our simulations, which are performed with both synthetic and real fMRI data, show that our method requires significantly less computation time than permutation-based methods, while offering the same order of robustness and returning more information about the evoked response when combined with/compared to the results obtained with the common General Lineal Model approach.
在本文中,我们提出了一种新颖的分析方法,该方法能够将非参数秩次统计应用于功能磁共振成像(fMRI)数据分析,因为它能恰当地考虑普遍存在的序列相关性(时间自相关性)。使用常见的一般线性模型和置换检验进行的比较模拟,证实了我们方法的有效性和实用性。我们用合成和真实fMRI数据进行的模拟表明,我们的方法与基于置换的方法相比,所需的计算时间显著更少,同时具有相同程度的稳健性,并且与使用常见一般线性模型方法获得的结果相结合/相比较时,能返回更多关于诱发反应的信息。