Suppr超能文献

纳米孔促进的、电压驱动的磷脂酰丝氨酸在脂质双层中的转运——在细胞中和计算机模拟中。

Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers--in cells and in silico.

作者信息

Vernier P Thomas, Ziegler Matthew J, Sun Yinghua, Gundersen Martin A, Tieleman D Peter

机构信息

Department of Electrical Engineering-Electrophysics, Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089-0271, USA.

出版信息

Phys Biol. 2006 Nov 2;3(4):233-47. doi: 10.1088/1478-3975/3/4/001.

Abstract

Nanosecond, megavolt-per-meter pulses--higher power but lower total energy than the electroporative pulses used to introduce normally excluded material into biological cells--produce large intracellular electric fields without destructively charging the plasma membrane. Nanoelectropulse perturbation of mammalian cells causes translocation of phosphatidylserine (PS) to the outer face of the cell, intracellular calcium release, and in some cell types a subsequent progression to apoptosis. Experimental observations and molecular dynamics (MD) simulations of membranes in pulsed electric fields presented here support the hypothesis that nanoelectropulse-induced PS externalization is driven by the electric potential that appears across the lipid bilayer during a pulse and is facilitated by the poration of the membrane that occurs even during pulses as brief as 3 ns. MD simulations of phospholipid bilayers in supraphysiological electric fields show a tight association between PS externalization and membrane pore formation on a nanosecond time scale that is consistent with experimental evidence for electropermeabilization and anode-directed PS translocation after nanosecond electric pulse exposure, suggesting a molecular mechanism for nanoelectroporation and nanosecond PS externalization: electrophoretic migration of the negatively charged PS head group along the surface of nanometer-diameter electropores initiated by field-driven alignment of water dipoles at the membrane interface.

摘要

纳秒级、兆伏每米的脉冲——与用于将通常被排斥的物质引入生物细胞的电穿孔脉冲相比,功率更高但总能量更低——能产生较大的细胞内电场,而不会使质膜发生破坏性充电。哺乳动物细胞的纳米电脉冲扰动会导致磷脂酰丝氨酸(PS)转运至细胞外表面、细胞内钙释放,并且在某些细胞类型中随后会发展为凋亡。此处呈现的脉冲电场中膜的实验观察结果和分子动力学(MD)模拟支持了以下假设:纳米电脉冲诱导的PS外化是由脉冲期间跨脂质双层出现的电势驱动的,并且即使在短至3纳秒的脉冲期间发生的膜穿孔也会促进这种外化。超生理电场中磷脂双层的MD模拟显示,在纳秒时间尺度上,PS外化与膜孔形成之间存在紧密关联,这与纳秒电脉冲暴露后电通透化和阳极定向PS转运的实验证据一致,提示了纳米电穿孔和纳秒PS外化的分子机制:带负电荷的PS头部基团沿着由膜界面处水偶极的场驱动排列引发的纳米直径电孔表面进行电泳迁移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验