Micallef Sandrine, Amzal Billy, Bach Véronique, Chardon Karen, Tourneux Pierre, Bois Frédéric Y
Institut National de l'Environnement Industriel et des Risques, Verneuil-en-Halatte, France.
Clin Pharmacokinet. 2007;46(1):59-74. doi: 10.2165/00003088-200746010-00003.
Caffeine treatment is widely used in nursing care to reduce the risk of apnoea in premature neonates. To check the therapeutic efficacy of the treatment against apnoea, caffeine concentration in blood is an important indicator. The present study was aimed at building a pharmacokinetic model as a basis for a medical decision support tool.
In the proposed model, time dependence of physiological parameters is introduced to describe rapid growth of neonates. To take into account the large variability in the population, the pharmacokinetic model is embedded in a population structure. The whole model is inferred within a Bayesian framework. To update caffeine concentration predictions as data of an incoming patient are collected, we propose a fast method that can be used in a medical context. This involves the sequential updating of model parameters (at individual and population levels) via a stochastic particle algorithm.
Our model provides better predictions than the ones obtained with models previously published. We show, through an example, that sequential updating improves predictions of caffeine concentration in blood (reduce bias and length of credibility intervals). The update of the pharmacokinetic model using body mass and caffeine concentration data is studied. It shows how informative caffeine concentration data are in contrast to body mass data.
This study provides the methodological basis to predict caffeine concentration in blood, after a given treatment if data are collected on the treated neonate.
咖啡因治疗在护理中广泛用于降低早产儿呼吸暂停的风险。为了检验该治疗对呼吸暂停的疗效,血液中的咖啡因浓度是一个重要指标。本研究旨在构建一个药代动力学模型,作为医学决策支持工具的基础。
在所提出的模型中,引入生理参数的时间依赖性来描述新生儿的快速生长。为了考虑人群中的较大变异性,药代动力学模型被嵌入到一个群体结构中。整个模型在贝叶斯框架内进行推断。为了在收集到新入院患者的数据时更新咖啡因浓度预测,我们提出了一种可在医学环境中使用的快速方法。这涉及通过随机粒子算法对模型参数(个体和群体水平)进行顺序更新。
我们的模型比先前发表的模型提供了更好的预测。我们通过一个例子表明,顺序更新改善了血液中咖啡因浓度的预测(减少偏差和可信区间的长度)。研究了使用体重和咖啡因浓度数据对药代动力学模型的更新。它显示了咖啡因浓度数据与体重数据相比的信息量。
本研究为在收集了治疗新生儿的数据后,预测给定治疗后血液中的咖啡因浓度提供了方法学基础。