Rabbah Pascale, Nadim Farzan
Department of Mathematical Sciences, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ 07102, USA.
J Neurophysiol. 2007 Mar;97(3):2239-53. doi: 10.1152/jn.01161.2006. Epub 2007 Jan 3.
Many rhythmically active networks involve heterogeneous populations of pacemaker neurons with potentially distinct synaptic outputs that can be differentially targeted by extrinsic inputs or neuromodulators, thereby increasing possible network output patterns. To understand the roles of heterogeneous pacemaker neurons, we characterized differences in synaptic output from the anterior burster (AB) and pyloric dilator (PD) neurons in the lobster pyloric network. These intrinsically distinct neurons are strongly electrically coupled, coactive, and constitute the pyloric pacemaker ensemble. During pyloric oscillations, the pacemaker neurons produce compound inhibitory synaptic connections to the follower lateral pyloric (LP) and pyloric constrictor (PY) neurons, which fire out of phase with AB/PD and with different delay times. Using pharmacological blockers, we separated the synapses originating from the AB and PD neurons and investigated their temporal dynamics. These synapses exhibited distinct short-term dynamics, depending on the presynaptic neuron type, and had different relative contributions to the total synaptic output depending on waveform shape and cycle frequency. However, paired comparisons revealed that the amplitude or dynamics of synapses from either the AB or PD neuron did not depend on the postsynaptic neuron type, LP or PY. To address the functional implications of these findings, we examined the correlation between synaptic inputs from the pacemakers and the burst onset phase of the LP and PY neurons in the ongoing pyloric rhythm. These comparisons showed that the activity of the LP and PY neurons is influenced by the peak phase and amplitude of the synaptic inputs from the pacemaker neurons.
许多有节律活动的神经网络包含不同类型的起搏器神经元,它们可能具有不同的突触输出,这些输出可以被外在输入或神经调质以不同方式靶向作用,从而增加了可能的网络输出模式。为了理解不同类型起搏器神经元的作用,我们对龙虾幽门神经网络中前爆发神经元(AB)和幽门扩张神经元(PD)的突触输出差异进行了表征。这些本质上不同的神经元通过强电耦合共同活动,构成了幽门起搏器集合。在幽门振荡期间,起搏器神经元向跟随的外侧幽门(LP)和幽门收缩(PY)神经元产生复合抑制性突触连接,这两种神经元与AB/PD神经元不同步放电且具有不同的延迟时间。我们使用药理学阻滞剂分离出来自AB和PD神经元的突触,并研究了它们的时间动态。这些突触表现出不同的短期动态,这取决于突触前神经元的类型,并且根据波形形状和周期频率对总突触输出有不同的相对贡献。然而,配对比较显示,来自AB或PD神经元的突触的幅度或动态并不取决于突触后神经元的类型,即LP或PY。为了探讨这些发现的功能意义,我们研究了在持续的幽门节律中起搏器的突触输入与LP和PY神经元爆发起始相位之间的相关性。这些比较表明,LP和PY神经元的活动受起搏器神经元突触输入的峰值相位和幅度的影响。