Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA.
J Neurosci. 2011 Nov 9;31(45):16387-97. doi: 10.1523/JNEUROSCI.3770-11.2011.
The phases at which network neurons fire in rhythmic motor outputs are critically important for the proper generation of motor behaviors. The pyloric network in the crustacean stomatogastric ganglion generates a rhythmic motor output wherein neuronal phase relationships are remarkably invariant across individuals and throughout lifetimes. The mechanisms for maintaining these robust phase relationships over the long-term are not well described. Here we show that tonic nanomolar dopamine (DA) acts at type 1 DA receptors (D1Rs) to enable an activity-dependent mechanism that can contribute to phase maintenance in the lateral pyloric (LP) neuron. The LP displays continuous rhythmic bursting. The activity-dependent mechanism was triggered by a prolonged decrease in LP burst duration, and it generated a persistent increase in the maximal conductance (G(max)) of the LP hyperpolarization-activated current (I(h)), but only in the presence of steady-state DA. Interestingly, micromolar DA produces an LP phase advance accompanied by a decrease in LP burst duration that abolishes normal LP network function. During a 1 h application of micromolar DA, LP phase recovered over tens of minutes because, the activity-dependent mechanism enabled by steady-state DA was triggered by the micromolar DA-induced decrease in LP burst duration. Presumably, this mechanism restored normal LP network function. These data suggest steady-state DA may enable homeostatic mechanisms that maintain motor network output during protracted neuromodulation. This DA-enabled, activity-dependent mechanism to preserve phase may be broadly relevant, as diminished dopaminergic tone has recently been shown to reduce I(h) in rhythmically active neurons in the mammalian brain.
在有节奏的运动输出中,网络神经元的发射阶段对于正确产生运动行为至关重要。甲壳动物口胃神经节中的口胃神经网生成一种有节奏的运动输出,其中神经元的相位关系在个体之间和整个生命周期中都非常不变。维持这些稳健的相位关系的长期机制尚未得到很好的描述。在这里,我们表明,持续的纳摩尔多巴胺(DA)通过 1 型 DA 受体(D1R)发挥作用,使一种活动依赖性机制能够有助于侧胃(LP)神经元的相位维持。LP 显示连续的有节奏的爆发。该活动依赖性机制由 LP 爆发持续时间的延长引起,它在 LP 超极化激活电流(I(h))的最大电导(G(max))中产生持续的增加,但仅在存在稳态 DA 的情况下。有趣的是,微摩尔 DA 产生 LP 相位提前,伴随着 LP 爆发持续时间的减少,从而消除了正常的 LP 网络功能。在微摩尔 DA 的 1 小时应用中,LP 相位在数十分钟内恢复,因为由稳态 DA 启用的活动依赖性机制由微摩尔 DA 诱导的 LP 爆发持续时间减少触发。据推测,这种机制恢复了正常的 LP 网络功能。这些数据表明,稳态 DA 可能启用维持运动网络输出的动态平衡机制,在延长的神经调制期间。这种 DA 启用的、活动依赖性的相位保持机制可能具有广泛的相关性,因为最近已经表明,哺乳动物大脑中节律性活跃神经元中的多巴胺能紧张度降低会降低 I(h)。