Suppr超能文献

刺激纳米摩尔多巴胺能使活动依赖性相位恢复机制持续改变节律性活跃神经元中超极化激活电流的最大电导率。

Tonic nanomolar dopamine enables an activity-dependent phase recovery mechanism that persistently alters the maximal conductance of the hyperpolarization-activated current in a rhythmically active neuron.

机构信息

Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA.

出版信息

J Neurosci. 2011 Nov 9;31(45):16387-97. doi: 10.1523/JNEUROSCI.3770-11.2011.

Abstract

The phases at which network neurons fire in rhythmic motor outputs are critically important for the proper generation of motor behaviors. The pyloric network in the crustacean stomatogastric ganglion generates a rhythmic motor output wherein neuronal phase relationships are remarkably invariant across individuals and throughout lifetimes. The mechanisms for maintaining these robust phase relationships over the long-term are not well described. Here we show that tonic nanomolar dopamine (DA) acts at type 1 DA receptors (D1Rs) to enable an activity-dependent mechanism that can contribute to phase maintenance in the lateral pyloric (LP) neuron. The LP displays continuous rhythmic bursting. The activity-dependent mechanism was triggered by a prolonged decrease in LP burst duration, and it generated a persistent increase in the maximal conductance (G(max)) of the LP hyperpolarization-activated current (I(h)), but only in the presence of steady-state DA. Interestingly, micromolar DA produces an LP phase advance accompanied by a decrease in LP burst duration that abolishes normal LP network function. During a 1 h application of micromolar DA, LP phase recovered over tens of minutes because, the activity-dependent mechanism enabled by steady-state DA was triggered by the micromolar DA-induced decrease in LP burst duration. Presumably, this mechanism restored normal LP network function. These data suggest steady-state DA may enable homeostatic mechanisms that maintain motor network output during protracted neuromodulation. This DA-enabled, activity-dependent mechanism to preserve phase may be broadly relevant, as diminished dopaminergic tone has recently been shown to reduce I(h) in rhythmically active neurons in the mammalian brain.

摘要

在有节奏的运动输出中,网络神经元的发射阶段对于正确产生运动行为至关重要。甲壳动物口胃神经节中的口胃神经网生成一种有节奏的运动输出,其中神经元的相位关系在个体之间和整个生命周期中都非常不变。维持这些稳健的相位关系的长期机制尚未得到很好的描述。在这里,我们表明,持续的纳摩尔多巴胺(DA)通过 1 型 DA 受体(D1R)发挥作用,使一种活动依赖性机制能够有助于侧胃(LP)神经元的相位维持。LP 显示连续的有节奏的爆发。该活动依赖性机制由 LP 爆发持续时间的延长引起,它在 LP 超极化激活电流(I(h))的最大电导(G(max))中产生持续的增加,但仅在存在稳态 DA 的情况下。有趣的是,微摩尔 DA 产生 LP 相位提前,伴随着 LP 爆发持续时间的减少,从而消除了正常的 LP 网络功能。在微摩尔 DA 的 1 小时应用中,LP 相位在数十分钟内恢复,因为由稳态 DA 启用的活动依赖性机制由微摩尔 DA 诱导的 LP 爆发持续时间减少触发。据推测,这种机制恢复了正常的 LP 网络功能。这些数据表明,稳态 DA 可能启用维持运动网络输出的动态平衡机制,在延长的神经调制期间。这种 DA 启用的、活动依赖性的相位保持机制可能具有广泛的相关性,因为最近已经表明,哺乳动物大脑中节律性活跃神经元中的多巴胺能紧张度降低会降低 I(h)。

相似文献

4
Dopamine modulation of two delayed rectifier potassium currents in a small neural network.
J Neurophysiol. 2005 Oct;94(4):2888-900. doi: 10.1152/jn.00434.2005. Epub 2005 Jul 13.
6
Tonic dopamine induces persistent changes in the transient potassium current through translational regulation.
J Neurosci. 2011 Sep 14;31(37):13046-56. doi: 10.1523/JNEUROSCI.2194-11.2011.
8
The transient potassium outward current has different roles in modulating the pyloric and gastric mill rhythms in the stomatogastric ganglion.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Apr;203(4):275-290. doi: 10.1007/s00359-017-1162-z. Epub 2017 Mar 18.
10
Co-variation of ionic conductances supports phase maintenance in stomatogastric neurons.
J Comput Neurosci. 2012 Aug;33(1):77-95. doi: 10.1007/s10827-011-0375-3. Epub 2011 Dec 3.

引用本文的文献

1
Peptidergic Modulation of the Lobster Cardiac System Has Opposing Action on Neurons and Muscles.
Integr Org Biol. 2025 Jan 24;7(1):obaf002. doi: 10.1093/iob/obaf002. eCollection 2025.
3
I Block Reveals Separation of Timescales in Pyloric Rhythm Response to Temperature Changes in .
bioRxiv. 2024 Aug 6:2024.05.04.592541. doi: 10.1101/2024.05.04.592541.
4
Excitatory and inhibitory effects of HCN channel modulation on excitability of layer V pyramidal cells.
PLoS Comput Biol. 2022 Sep 13;18(9):e1010506. doi: 10.1371/journal.pcbi.1010506. eCollection 2022 Sep.
5
The dynamic range of voltage-dependent gap junction signaling is maintained by -induced membrane potential depolarization.
J Neurophysiol. 2022 Mar 1;127(3):776-790. doi: 10.1152/jn.00545.2021. Epub 2022 Feb 16.
6
Hypothalamic Dopamine Neurons Control Sensorimotor Behavior by Modulating Brainstem Premotor Nuclei in Zebrafish.
Curr Biol. 2020 Dec 7;30(23):4606-4618.e4. doi: 10.1016/j.cub.2020.09.002. Epub 2020 Oct 1.

本文引用的文献

1
Tonic dopamine induces persistent changes in the transient potassium current through translational regulation.
J Neurosci. 2011 Sep 14;31(37):13046-56. doi: 10.1523/JNEUROSCI.2194-11.2011.
2
Localization and function of Ih channels in a small neural network.
J Neurophysiol. 2011 Jul;106(1):44-58. doi: 10.1152/jn.00897.2010. Epub 2011 Apr 13.
3
Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement.
Annu Rev Neurosci. 2011;34:89-103. doi: 10.1146/annurev-neuro-060909-153238.
4
Variability, compensation, and modulation in neurons and circuits.
Proc Natl Acad Sci U S A. 2011 Sep 13;108 Suppl 3(Suppl 3):15542-8. doi: 10.1073/pnas.1010674108. Epub 2011 Mar 7.
7
HCN channelopathy in external globus pallidus neurons in models of Parkinson's disease.
Nat Neurosci. 2011 Jan;14(1):85-92. doi: 10.1038/nn.2692. Epub 2010 Nov 14.
8
Differential modulation of synaptic strength and timing regulate synaptic efficacy in a motor network.
J Neurophysiol. 2011 Jan;105(1):293-304. doi: 10.1152/jn.00809.2010. Epub 2010 Nov 3.
9
Precise temperature compensation of phase in a rhythmic motor pattern.
PLoS Biol. 2010 Aug 31;8(8):e1000469. doi: 10.1371/journal.pbio.1000469.
10
A role for compromise: synaptic inhibition and electrical coupling interact to control phasing in the leech heartbeat CpG.
Front Behav Neurosci. 2010 Jul 12;4. doi: 10.3389/fnbeh.2010.00038. eCollection 2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验