Suppr超能文献

运动系统如何在很宽的温度范围内保持性能?来自甲壳类动物口胃神经系统的经验教训。

How can motor systems retain performance over a wide temperature range? Lessons from the crustacean stomatogastric nervous system.

作者信息

Marder Eve, Haddad Sara A, Goeritz Marie L, Rosenbaum Philipp, Kispersky Tilman

机构信息

Volen Center and Biology Department, MS 013, Brandeis University, 415 South St., Waltham, MA, 02454, USA.

出版信息

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015 Sep;201(9):851-6. doi: 10.1007/s00359-014-0975-2. Epub 2015 Jan 1.

Abstract

Marine invertebrates, such as lobsters and crabs, deal with a widely and wildly fluctuating temperature environment. Here, we describe the effects of changing temperature on the motor patterns generated by the stomatogastric nervous system of the crab, Cancer borealis. Over a broad range of "permissive" temperatures, the pyloric rhythm increases in frequency but maintains its characteristic phase relationships. Nonetheless, at more extreme high temperatures, the normal triphasic pyloric rhythm breaks down, or "crashes". We present both experimental and computational approaches to understanding the stability of both single neurons and networks to temperature perturbations, and discuss data that shows that the "crash" temperatures themselves may be environmentally regulated. These approaches provide insight into how the nervous system can be stable to a global perturbation, such as temperature, in spite of the fact that all biological processes are temperature dependent.

摘要

海洋无脊椎动物,如龙虾和螃蟹,要应对广泛且波动剧烈的温度环境。在此,我们描述了温度变化对北方黄道蟹口胃神经系统产生的运动模式的影响。在广泛的“适宜”温度范围内,幽门节律频率增加,但保持其特征性的相位关系。然而,在更高的极端温度下,正常的三相幽门节律会瓦解或“崩溃”。我们展示了实验和计算方法来理解单个神经元和网络对温度扰动的稳定性,并讨论了表明“崩溃”温度本身可能受环境调节的数据。这些方法深入探讨了尽管所有生物过程都依赖于温度,但神经系统如何能对诸如温度这样的全局扰动保持稳定。

相似文献

1
How can motor systems retain performance over a wide temperature range? Lessons from the crustacean stomatogastric nervous system.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015 Sep;201(9):851-6. doi: 10.1007/s00359-014-0975-2. Epub 2015 Jan 1.
2
Alterations in network robustness upon simultaneous temperature and pH perturbations.
J Neurophysiol. 2024 Mar 1;131(3):509-515. doi: 10.1152/jn.00483.2023. Epub 2024 Jan 24.
3
Phase maintenance in a rhythmic motor pattern during temperature changes in vivo.
J Neurophysiol. 2014 Jun 15;111(12):2603-13. doi: 10.1152/jn.00906.2013. Epub 2014 Mar 26.
4
Graded Transmission without Action Potentials Sustains Rhythmic Activity in Some But Not All Modulators That Activate the Same Current.
J Neurosci. 2018 Oct 17;38(42):8976-8988. doi: 10.1523/JNEUROSCI.2632-17.2018. Epub 2018 Sep 5.
5
Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs.
Annu Rev Physiol. 2007;69:291-316. doi: 10.1146/annurev.physiol.69.031905.161516.
8
Rapid adaptation to elevated extracellular potassium in the pyloric circuit of the crab, .
J Neurophysiol. 2020 May 1;123(5):2075-2089. doi: 10.1152/jn.00135.2020. Epub 2020 Apr 22.
9
Precise temperature compensation of phase in a rhythmic motor pattern.
PLoS Biol. 2010 Aug 31;8(8):e1000469. doi: 10.1371/journal.pbio.1000469.
10
Sources and range of long-term variability of rhythmic motor patterns in vivo.
J Exp Biol. 2015 Dec;218(Pt 24):3950-61. doi: 10.1242/jeb.126581. Epub 2015 Oct 30.

引用本文的文献

1
Decoding thermal resilience in fish: acute warming tolerance is associated with neural failure in rainbow trout.
Biol Lett. 2025 Jul;21(7):20250132. doi: 10.1098/rsbl.2025.0132. Epub 2025 Jul 30.
2
Alterations in network robustness upon simultaneous temperature and pH perturbations.
J Neurophysiol. 2024 Mar 1;131(3):509-515. doi: 10.1152/jn.00483.2023. Epub 2024 Jan 24.
3
Neurobiology and Changing Ecosystems: Mechanisms Underlying Responses to Human-Generated Environmental Impacts.
J Neurosci. 2023 Nov 8;43(45):7530-7537. doi: 10.1523/JNEUROSCI.1431-23.2023.
4
Brain dysfunction during warming is linked to oxygen limitation in larval zebrafish.
Proc Natl Acad Sci U S A. 2022 Sep 27;119(39):e2207052119. doi: 10.1073/pnas.2207052119. Epub 2022 Sep 19.
5
From the Neuroscience of Individual Variability to Climate Change.
J Neurosci. 2021 Dec 15;41(50):10213-10221. doi: 10.1523/JNEUROSCI.1261-21.2021. Epub 2021 Nov 9.
6
Neuronal oscillator robustness to multiple global perturbations.
Biophys J. 2021 Apr 20;120(8):1454-1468. doi: 10.1016/j.bpj.2021.01.038. Epub 2021 Feb 18.
7
Coupling between fast and slow oscillator circuits in is temperature-compensated.
Elife. 2021 Feb 4;10:e60454. doi: 10.7554/eLife.60454.
8
The Drosophila ERG channel seizure plays a role in the neuronal homeostatic stress response.
PLoS Genet. 2019 Aug 8;15(8):e1008288. doi: 10.1371/journal.pgen.1008288. eCollection 2019 Aug.
9
effects of temperature on the heart and pyloric rhythms in the crab .
J Exp Biol. 2019 Mar 1;222(Pt 5):jeb199190. doi: 10.1242/jeb.199190.

本文引用的文献

2
Many parameter sets in a multicompartment model oscillator are robust to temperature perturbations.
J Neurosci. 2014 Apr 2;34(14):4963-75. doi: 10.1523/JNEUROSCI.0280-14.2014.
3
Phase maintenance in a rhythmic motor pattern during temperature changes in vivo.
J Neurophysiol. 2014 Jun 15;111(12):2603-13. doi: 10.1152/jn.00906.2013. Epub 2014 Mar 26.
4
Temperature sensitivity of the pyloric neuromuscular system and its modulation by dopamine.
PLoS One. 2013 Jun 28;8(6):e67930. doi: 10.1371/journal.pone.0067930. Print 2013.
5
The effects of temperature on the stability of a neuronal oscillator.
PLoS Comput Biol. 2013;9(1):e1002857. doi: 10.1371/journal.pcbi.1002857. Epub 2013 Jan 10.
6
Robustness of a rhythmic circuit to short- and long-term temperature changes.
J Neurosci. 2012 Jul 18;32(29):10075-85. doi: 10.1523/JNEUROSCI.1443-12.2012.
7
Temperature and neuronal circuit function: compensation, tuning and tolerance.
Curr Opin Neurobiol. 2012 Aug;22(4):724-34. doi: 10.1016/j.conb.2012.01.008. Epub 2012 Feb 10.
8
Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila.
Nature. 2011 Dec 4;481(7379):76-80. doi: 10.1038/nature10715.
9
A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels.
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19492-7. doi: 10.1073/pnas.1117485108. Epub 2011 Nov 22.
10
Variability, compensation, and modulation in neurons and circuits.
Proc Natl Acad Sci U S A. 2011 Sep 13;108 Suppl 3(Suppl 3):15542-8. doi: 10.1073/pnas.1010674108. Epub 2011 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验