Marder Eve, Haddad Sara A, Goeritz Marie L, Rosenbaum Philipp, Kispersky Tilman
Volen Center and Biology Department, MS 013, Brandeis University, 415 South St., Waltham, MA, 02454, USA.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015 Sep;201(9):851-6. doi: 10.1007/s00359-014-0975-2. Epub 2015 Jan 1.
Marine invertebrates, such as lobsters and crabs, deal with a widely and wildly fluctuating temperature environment. Here, we describe the effects of changing temperature on the motor patterns generated by the stomatogastric nervous system of the crab, Cancer borealis. Over a broad range of "permissive" temperatures, the pyloric rhythm increases in frequency but maintains its characteristic phase relationships. Nonetheless, at more extreme high temperatures, the normal triphasic pyloric rhythm breaks down, or "crashes". We present both experimental and computational approaches to understanding the stability of both single neurons and networks to temperature perturbations, and discuss data that shows that the "crash" temperatures themselves may be environmentally regulated. These approaches provide insight into how the nervous system can be stable to a global perturbation, such as temperature, in spite of the fact that all biological processes are temperature dependent.
海洋无脊椎动物,如龙虾和螃蟹,要应对广泛且波动剧烈的温度环境。在此,我们描述了温度变化对北方黄道蟹口胃神经系统产生的运动模式的影响。在广泛的“适宜”温度范围内,幽门节律频率增加,但保持其特征性的相位关系。然而,在更高的极端温度下,正常的三相幽门节律会瓦解或“崩溃”。我们展示了实验和计算方法来理解单个神经元和网络对温度扰动的稳定性,并讨论了表明“崩溃”温度本身可能受环境调节的数据。这些方法深入探讨了尽管所有生物过程都依赖于温度,但神经系统如何能对诸如温度这样的全局扰动保持稳定。