碱基切除修复机制的复杂结构化学:对DNA损伤识别、去除和修复的影响。
The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair.
作者信息
Hitomi Kenichi, Iwai Shigenori, Tainer John A
机构信息
Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
出版信息
DNA Repair (Amst). 2007 Apr 1;6(4):410-28. doi: 10.1016/j.dnarep.2006.10.004. Epub 2007 Jan 8.
Three-dimensional structures of DNA N-glycosylases and N-glycosylase/apyrimidine/apurine (AP)-lyase enzymes and other critical components of base excision repair (BER) machinery including structure-specific nuclease, repair polymerase, DNA ligase, and PCNA tethering complexes reveal the overall unity of the simple cut and patch process of DNA repair for damaged bases. In general, the damage-specific excision is initiated by structurally-variable DNA glycosylases targeted to distinct base lesions. This committed excision step is followed by a subsequent damage-general processing of the resulting abasic sites and 3' termini, the insertion of the correct base by a repair DNA polymerase, and finally sealing the nicked backbone by DNA ligase. However, recent structures of protein-DNA and protein-protein complexes and other BER machinery are providing a more in-depth look into the intricate functional diversity and complexity of maintaining genomic integrity despite very high levels of constant DNA base damage from endogenous as well as environmental agents. Here we focus on key discoveries concerning BER structural biology that speak to better understanding the damage recognition, reaction mechanisms, conformational controls, coordinated handoffs, and biological activities including links to cancer. As the three-dimensional crystal and NMR structures for the protein and DNA complexes of all major components of the BER system have now been determined, we provide here a relatively complete description of the key complexes starting from DNA base damage detection and excision to the final ligation process. As our understanding of BER structural biology and the molecular basis for cancer improve, we predict that there will be multiple links joining BER enzyme mutations and cancer predispositions, such as now seen for MYH. Currently, structural results are realizing the promise that high-resolution structures provide detailed insights into how these BER proteins function to specifically recognize, remove, and repair DNA base damage without the release of toxic and mutagenic intermediates.
DNA N-糖基化酶、N-糖基化酶/无嘧啶/无嘌呤(AP)裂解酶以及碱基切除修复(BER)机制的其他关键组件(包括结构特异性核酸酶、修复聚合酶、DNA连接酶和PCNA拴系复合物)的三维结构揭示了针对受损碱基的DNA修复简单切割和修补过程的整体统一性。一般来说,损伤特异性切除由靶向不同碱基损伤的结构可变DNA糖基化酶启动。在这一关键的切除步骤之后,是对产生的无碱基位点和3'末端进行后续的损伤通用处理,由修复DNA聚合酶插入正确的碱基,最后由DNA连接酶封闭切口的主链。然而,最近蛋白质-DNA和蛋白质-蛋白质复合物以及其他BER机制的结构,为深入了解尽管内源性和环境因素导致DNA碱基持续受到高水平损伤,但维持基因组完整性的复杂功能多样性和复杂性提供了更多视角。在这里,我们重点关注有关BER结构生物学的关键发现,这些发现有助于更好地理解损伤识别、反应机制、构象控制、协调交接以及包括与癌症关联在内的生物学活性。由于BER系统所有主要组件的蛋白质和DNA复合物的三维晶体结构和核磁共振结构现已确定,我们在此从DNA碱基损伤检测和切除到最终连接过程,对关键复合物进行了相对完整的描述。随着我们对BER结构生物学和癌症分子基础的理解不断提高,我们预测将会有多个联系将BER酶突变与癌症易感性联系起来,就像目前在MYH中所看到的那样。目前,结构研究结果正在实现高分辨率结构所带来的前景,即提供详细的见解,说明这些BER蛋白如何发挥作用,特异性识别、去除和修复DNA碱基损伤,而不释放有毒和致突变的中间体。