Moiani Davide, Tainer John A
Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.
Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.
Front Mol Biosci. 2024 Nov 28;11:1442267. doi: 10.3389/fmolb.2024.1442267. eCollection 2024.
While many researchers can design knockdown and knockout methodologies to remove a gene product, this is mainly untrue for new chemical inhibitor designs that empower multifunctional DNA Damage Response (DDR) networks. Here, we present a robust Goldilocks (GL) computational discovery protocol to efficiently innovate inhibitor tools and preclinical drug candidates for cellular and structural biologists without requiring extensive virtual screen (VS) and chemical synthesis expertise. By computationally targeting DDR replication and repair proteins, we exemplify the identification of DDR target sites and compounds to probe cancer biology. Our GL pipeline integrates experimental and predicted structures to efficiently discover leads, allowing early-structure and early-testing (ESET) experiments by many laboratories. By employing an efficient VS protocol to examine protein-protein interfaces (PPIs) and allosteric interactions, we identify ligand binding sites beyond active sites, leveraging advances for molecular docking and modeling to screen PPIs and multiple targets. A diverse 3,174 compound ESET library combines Diamond Light Source DSI-poised, Protein Data Bank fragments, and FDA-approved drugs to span relevant chemotypes and facilitate downstream hit evaluation efficiency for academic laboratories. Two VS per library and multiple ranked ligand binding poses enable target testing for several DDR targets. This GL library and protocol can thus strategically probe multiple DDR network targets and identify readily available compounds for early structural and activity testing to overcome bottlenecks that can limit timely breakthrough drug discoveries. By testing accessible compounds to dissect multi-functional DDRs and suggesting inhibitor mechanisms from initial docking, the GL approach may enable more groups to help accelerate discovery, suggest new sites and compounds for challenging targets including emerging biothreats and advance cancer biology for future precision medicine clinical trials.
虽然许多研究人员可以设计基因敲低和敲除方法来去除基因产物,但对于能够增强多功能DNA损伤反应(DDR)网络的新型化学抑制剂设计来说,情况并非如此。在此,我们提出了一种强大的“金发姑娘”(GL)计算发现协议,无需广泛的虚拟筛选(VS)和化学合成专业知识,就能为细胞生物学家和结构生物学家高效创新抑制剂工具和临床前候选药物。通过计算靶向DDR复制和修复蛋白,我们举例说明了DDR靶点和化合物的鉴定,以探究癌症生物学。我们的GL流程整合了实验结构和预测结构,以高效发现先导物,允许许多实验室进行早期结构和早期测试(ESET)实验。通过采用高效的VS协议来检查蛋白质-蛋白质相互作用(PPI)和变构相互作用,我们识别出活性位点之外的配体结合位点,利用分子对接和建模的进展来筛选PPI和多个靶点。一个包含3174种化合物的多样化ESET文库结合了钻石光源DSI就绪的、蛋白质数据库片段和FDA批准的药物,以涵盖相关化学类型,并提高学术实验室下游命中评估的效率。每个文库进行两次VS和多个排序的配体结合姿势,能够对多个DDR靶点进行测试。因此,这个GL文库和协议可以战略性地探究多个DDR网络靶点,并识别易于获得的化合物用于早期结构和活性测试,以克服可能限制及时突破性药物发现的瓶颈。通过测试可获取的化合物来剖析多功能DDR,并从初始对接中推断抑制剂机制,GL方法可能使更多团队能够帮助加速发现,为包括新兴生物威胁在内的具有挑战性的靶点提出新的位点和化合物,并推动未来精准医学临床试验的癌症生物学发展。