Weinstein Alan M, Weinbaum Sheldon, Duan Yi, Du Zhaopeng, Yan Qingshang, Wang Tong
Dept. of Physiology and Biophysics, Weill Medical College of Cornell Univ., 1300 York Ave., New York, NY 10021, USA.
Am J Physiol Renal Physiol. 2007 Apr;292(4):F1164-81. doi: 10.1152/ajprenal.00392.2006. Epub 2007 Jan 9.
The mathematical model of rat proximal tubule has been extended to include calculation of microvillous torque and to incorporate torque-dependent solute transport in a compliant tubule. The torque calculation follows that of Du Z, Yan Q, Duan Y, Weinbaum S, Weinstein AM, and Wang T (Am J Physiol 290: F289-F296, 2006). In the model calculations, torque-dependent scaling of luminal membrane transporter density [either as an ensemble or just type 3 Na(+)/H(+) exchanger (NHE3) alone] had a relatively small impact on overall Na(+) reabsorption and could produce a lethal derangement of cell volume; coordinated regulation of luminal and peritubular transporters was required to represent the overall impact of luminal flow on Na(+) reabsorption. When the magnitude of torque-dependent Na(+) reabsorption in the model agrees with that observed in mouse proximal tubules, the model tubule shows nearly perfect perfusion-absorption balance at high luminal perfusion rates, but enhanced sensitivity of reabsorption at low flow. With a slightly lower coefficient for torque-sensitive transporter insertion, perfusion-absorption balance in the model tubule is closer to observations in the rat over a broader range of inlet flows. In simulation of hyperglycemia, torque-dependent transport attenuated the diuretic effect and brought the model tubule into closer agreement with experimental observation in the rat. The model was also extended to represent finite rates of hydration and dehydration of CO(2) and H(2)CO(3). With carbonic anhydrase inhibition, torque-dependent transport blunted the diuretic effect and enhanced the shift from paracellular to transcellular NaCl reabsorption. The new features of this model tubule are an important step toward simulation of glomerulotubular balance.
大鼠近端小管的数学模型已得到扩展,包括微绒毛扭矩的计算,并将扭矩依赖性溶质转运纳入顺应性小管中。扭矩计算遵循Du Z、Yan Q、Duan Y、Weinbaum S、Weinstein AM和Wang T的方法(《美国生理学杂志》290:F289 - F296,2006年)。在模型计算中,管腔膜转运体密度的扭矩依赖性缩放(无论是整体还是仅单独的3型钠氢交换体(NHE3))对总体钠重吸收的影响相对较小,并且可能导致细胞体积的致命紊乱;需要管腔和肾小管周围转运体的协调调节来体现管腔流量对钠重吸收的总体影响。当模型中扭矩依赖性钠重吸收的幅度与在小鼠近端小管中观察到的一致时,模型小管在高管腔灌注率下显示出近乎完美的灌注 - 吸收平衡,但在低流量时重吸收的敏感性增强。对于扭矩敏感转运体插入的系数略低时,模型小管在更广泛的入口流量范围内的灌注 - 吸收平衡更接近大鼠的观察结果。在高血糖模拟中,扭矩依赖性转运减弱了利尿作用,并使模型小管与大鼠的实验观察结果更接近。该模型还扩展以表示二氧化碳和碳酸的有限水化和脱水速率。在碳酸酐酶抑制的情况下,扭矩依赖性转运减弱了利尿作用,并增强了从细胞旁到跨细胞氯化钠重吸收的转变。这个模型小管的新特性是朝着模拟球管平衡迈出的重要一步。