Suppr超能文献

病理学智能辅导系统的评估:外部表征对成绩提升、元认知和接受度的影响。

Evaluation of an intelligent tutoring system in pathology: effects of external representation on performance gains, metacognition, and acceptance.

作者信息

Crowley Rebecca S, Legowski Elizabeth, Medvedeva Olga, Tseytlin Eugene, Roh Ellen, Jukic Drazen

机构信息

Department of Biomedical Informatics, University of Pittsburgh School of Medicine, UPMC Shadyside Cancer Pavilion, Room 307, 5230 Centre Avenue, Pittsburgh, PA 15232, USA.

出版信息

J Am Med Inform Assoc. 2007 Mar-Apr;14(2):182-90. doi: 10.1197/jamia.M2241. Epub 2007 Jan 9.

Abstract

OBJECTIVE

Determine effects of computer-based tutoring on diagnostic performance gains, meta-cognition, and acceptance using two different problem representations. Describe impact of tutoring on spectrum of diagnostic skills required for task performance. Identify key features of student-tutor interaction contributing to learning gains.

DESIGN

Prospective, between-subjects study, controlled for participant level of training. Resident physicians in two academic pathology programs spent four hours using one of two interfaces which differed mainly in external problem representation. The case-focused representation provided an open-learning environment in which students were free to explore evidence-hypothesis relationships within a case, but could not visualize the entire diagnostic space. The knowledge-focused representation provided an interactive representation of the entire diagnostic space, which more tightly constrained student actions.

MEASUREMENTS

Metrics included results of pretest, post-test and retention-test for multiple choice and case diagnosis tests, ratios of performance to student reported certainty, results of participant survey, learning curves, and interaction behaviors during tutoring.

RESULTS

Students had highly significant learning gains after one tutoring session. Learning was retained at one week. There were no differences between the two interfaces in learning gains on post-test or retention test. Only students in the knowledge-focused interface exhibited significant metacognitive gains from pretest to post-test and pretest to retention test. Students rated the knowledge-focused interface significantly higher than the case-focused interface.

CONCLUSIONS

Cognitive tutoring is associated with improved diagnostic performance in a complex medical domain. The effect is retained at one-week post-training. Knowledge-focused external problem representation shows an advantage over case-focused representation for metacognitive effects and user acceptance.

摘要

目的

使用两种不同的问题呈现方式,确定基于计算机的辅导对诊断性能提升、元认知和接受度的影响。描述辅导对任务执行所需诊断技能范围的影响。识别有助于学习成果的学生与辅导教师互动的关键特征。

设计

前瞻性、受试者间研究,对参与者的培训水平进行控制。两个学术病理学项目中的住院医师使用两种主要在外部问题呈现方式上有所不同的界面之一,进行了四个小时的学习。以病例为重点的呈现方式提供了一个开放式学习环境,学生可以在其中自由探索病例中的证据 - 假设关系,但无法可视化整个诊断空间。以知识为重点的呈现方式提供了整个诊断空间的交互式呈现,对学生的行为限制更严格。

测量指标

指标包括多项选择题和病例诊断测试的预测试、后测试和保留测试结果、表现与学生报告的确定性的比率、参与者调查结果、学习曲线以及辅导期间的互动行为。

结果

学生在一次辅导课程后有非常显著的学习成果。学习成果在一周后得以保留。在测试后或保留测试的学习成果方面,两种界面之间没有差异。只有使用以知识为重点界面的学生在从预测试到后测试以及从预测试到保留测试中表现出显著的元认知提升。学生对以知识为重点的界面的评价明显高于以病例为重点的界面。

结论

认知辅导与复杂医学领域中诊断性能的提高相关。这种效果在培训后一周得以保留。以知识为重点的外部问题呈现方式在元认知效果和用户接受度方面比以病例为重点的呈现方式更具优势。

相似文献

2
Effect of a limited-enforcement intelligent tutoring system in dermatopathology on student errors, goals and solution paths.
Artif Intell Med. 2009 Nov;47(3):175-97. doi: 10.1016/j.artmed.2009.07.002. Epub 2009 Sep 25.
3
Factors affecting feeling-of-knowing in a medical intelligent tutoring system: the role of immediate feedback as a metacognitive scaffold.
Adv Health Sci Educ Theory Pract. 2010 Mar;15(1):9-30. doi: 10.1007/s10459-009-9162-6. Epub 2009 May 12.
4
A natural language intelligent tutoring system for training pathologists: implementation and evaluation.
Adv Health Sci Educ Theory Pract. 2008 Dec;13(5):709-22. doi: 10.1007/s10459-007-9081-3. Epub 2007 Oct 13.
5
Improving the learning of clinical reasoning through computer-based cognitive representation.
Med Educ Online. 2014 Dec 16;19:25940. doi: 10.3402/meo.v19.25940. eCollection 2014.
9
An intelligent tutoring system for visual classification problem solving.
Artif Intell Med. 2006 Jan;36(1):85-117. doi: 10.1016/j.artmed.2005.01.005. Epub 2005 Aug 10.
10
[Striking a new path in medical education. CAMPUS, an interactive, case-based training system].
Med Klin (Munich). 2006 May 15;101(5):365-72. doi: 10.1007/s00063-006-1047-3.

引用本文的文献

2
The Role of Artificial Intelligence in the Diagnosis of Melanoma.
Cureus. 2024 Sep 20;16(9):e69818. doi: 10.7759/cureus.69818. eCollection 2024 Sep.
6
7
OpenSlide: A vendor-neutral software foundation for digital pathology.
J Pathol Inform. 2013 Sep 27;4:27. doi: 10.4103/2153-3539.119005. eCollection 2013.
8
Whole slide imaging for educational purposes.
J Pathol Inform. 2012;3:46. doi: 10.4103/2153-3539.104908. Epub 2012 Dec 20.
9
Digital pathology consultations-a new era in digital imaging, challenges and practical applications.
J Digit Imaging. 2013 Aug;26(4):668-77. doi: 10.1007/s10278-013-9572-0.
10
Automated detection of heuristics and biases among pathologists in a computer-based system.
Adv Health Sci Educ Theory Pract. 2013 Aug;18(3):343-63. doi: 10.1007/s10459-012-9374-z. Epub 2012 May 23.

本文引用的文献

1
The marvelous medical education machine or how medical education can be `unstuck' in time.
Med Teach. 2000;22(5):496-502. doi: 10.1080/01421590050110786.
2
Intelligent medical training systems.
Artif Intell Med. 2006 Sep;38(1):1-4. doi: 10.1016/j.artmed.2006.06.001. Epub 2006 Aug 4.
3
Implementing tutoring strategies into a patient simulator for clinical reasoning learning.
Artif Intell Med. 2006 Sep;38(1):79-96. doi: 10.1016/j.artmed.2006.01.003. Epub 2006 May 2.
4
An intelligent tutoring system that generates a natural language dialogue using dynamic multi-level planning.
Artif Intell Med. 2006 Sep;38(1):25-46. doi: 10.1016/j.artmed.2005.10.004. Epub 2005 Dec 13.
5
A Bayesian approach to generating tutorial hints in a collaborative medical problem-based learning system.
Artif Intell Med. 2006 Sep;38(1):5-24. doi: 10.1016/j.artmed.2005.04.003. Epub 2005 Sep 23.
6
An intelligent tutoring system for visual classification problem solving.
Artif Intell Med. 2006 Jan;36(1):85-117. doi: 10.1016/j.artmed.2005.01.005. Epub 2005 Aug 10.
7
Research in clinical reasoning: past history and current trends.
Med Educ. 2005 Apr;39(4):418-27. doi: 10.1111/j.1365-2929.2005.02127.x.
8
Diagnostic reasoning strategies and diagnostic success.
Med Educ. 2003 Aug;37(8):695-703. doi: 10.1046/j.1365-2923.2003.01577.x.
9
Development of visual diagnostic expertise in pathology -- an information-processing study.
J Am Med Inform Assoc. 2003 Jan-Feb;10(1):39-51. doi: 10.1197/jamia.m1123.
10
Structured computer-based training in the interpretation of neuroradiological images.
Int J Med Inform. 2000 Dec;60(3):263-80. doi: 10.1016/s1386-5056(00)00101-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验