Suppr超能文献

适应性电子学习环境对卫生专业人员和学生的知识、能力及行为的有效性:系统评价与荟萃分析方案

Effectiveness of Adaptive E-Learning Environments on Knowledge, Competence, and Behavior in Health Professionals and Students: Protocol for a Systematic Review and Meta-Analysis.

作者信息

Fontaine Guillaume, Cossette Sylvie, Maheu-Cadotte Marc-André, Mailhot Tanya, Deschênes Marie-France, Mathieu-Dupuis Gabrielle

机构信息

Montreal Heart Institute Research Center, Montreal, QC, Canada.

Faculty of Nursing, Université de Montréal, Montreal, QC, Canada.

出版信息

JMIR Res Protoc. 2017 Jul 5;6(7):e128. doi: 10.2196/resprot.8085.

Abstract

BACKGROUND

Adaptive e-learning environments (AEEs) can provide tailored instruction by adapting content, navigation, presentation, multimedia, and tools to each user's navigation behavior, individual objectives, knowledge, and preferences. AEEs can have various levels of complexity, ranging from systems using a simple adaptive functionality to systems using artificial intelligence. While AEEs are promising, their effectiveness for the education of health professionals and health professions students remains unclear.

OBJECTIVE

The purpose of this systematic review is to assess the effectiveness of AEEs in improving knowledge, competence, and behavior in health professionals and students.

METHODS

We will follow the Cochrane Collaboration and the Effective Practice and Organisation of Care (EPOC) Group guidelines on systematic review methodology. A systematic search of the literature will be conducted in 6 bibliographic databases (CINAHL, EMBASE, ERIC, PsycINFO, PubMed, and Web of Science) using the concepts "adaptive e-learning environments," "health professionals/students," and "effects on knowledge/skills/behavior." We will include randomized and nonrandomized controlled trials, in addition to controlled before-after, interrupted time series, and repeated measures studies published between 2005 and 2017. The title and the abstract of each study followed by a full-text assessment of potentially eligible studies will be independently screened by 2 review authors. Using the EPOC extraction form, 1 review author will conduct data extraction and a second author will validate the data extraction. The methodological quality of included studies will be independently assessed by 2 review authors using the EPOC risk of bias criteria. Included studies will be synthesized by a descriptive analysis. Where appropriate, data will be pooled using meta-analysis by applying the RevMan software version 5.1, considering the heterogeneity of studies.

RESULTS

The review is in progress. We plan to submit the results in the beginning of 2018.

CONCLUSION

Providing tailored instruction to health professionals and students is a priority in order to optimize learning and clinical outcomes. This systematic review will synthesize the best available evidence regarding the effectiveness of AEEs in improving knowledge, competence, and behavior in health professionals and students. It will provide guidance to policy makers, hospital managers, and researchers in terms of AEE development, implementation, and evaluation in health care.

摘要

背景

自适应电子学习环境(AEE)可以通过根据每个用户的导航行为、个人目标、知识和偏好来调整内容、导航、呈现方式、多媒体和工具,从而提供量身定制的指导。AEE可以具有不同程度的复杂性,从使用简单自适应功能的系统到使用人工智能的系统。虽然AEE前景广阔,但其对卫生专业人员和卫生专业学生教育的有效性仍不明确。

目的

本系统评价的目的是评估AEE在提高卫生专业人员和学生的知识、能力和行为方面的有效性。

方法

我们将遵循Cochrane协作网以及有效实践与护理组织(EPOC)小组关于系统评价方法的指南。将在6个文献数据库(CINAHL、EMBASE、ERIC、PsycINFO、PubMed和Web of Science)中使用“自适应电子学习环境”、“卫生专业人员/学生”以及“对知识/技能/行为的影响”等概念对文献进行系统检索。我们将纳入随机对照试验和非随机对照试验,以及2005年至2017年间发表的前后对照、中断时间序列和重复测量研究。每项研究的标题和摘要,随后对潜在符合条件的研究进行全文评估,将由2名综述作者独立筛选。使用EPOC提取表,1名综述作者将进行数据提取,另一名作者将对数据提取进行验证。纳入研究的方法学质量将由2名综述作者使用EPOC偏倚风险标准独立评估。纳入研究将通过描述性分析进行综合。在适当情况下,将使用RevMan软件5.1版通过荟萃分析汇总数据,同时考虑研究的异质性。

结果

本综述正在进行中。我们计划在2018年初提交结果。

结论

为卫生专业人员和学生提供量身定制的指导是优化学习和临床结果的优先事项。本系统评价将综合关于AEE在提高卫生专业人员和学生的知识、能力和行为方面有效性的最佳现有证据。它将在AEE在医疗保健中的开发、实施和评估方面为政策制定者、医院管理人员和研究人员提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6284/5517824/7cef7e4e7244/resprot_v6i7e128_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验