Lim Jung Yul, Dreiss Andrea D, Zhou Zhiyi, Hansen Joshua C, Siedlecki Christopher A, Hengstebeck Robert W, Cheng Juan, Winograd Nicholas, Donahue Henry J
Department of Orthopaedics and Rehabilitation, Division of Musculoskeletal Sciences, Center for Biomedical Devices and Functional Tissue Engineering, College of Medicine, Pennsylvania State University, Hershey, PA, USA.
Biomaterials. 2007 Apr;28(10):1787-97. doi: 10.1016/j.biomaterials.2006.12.020. Epub 2006 Dec 21.
An important consideration in developing physical biomimetic cell-stimulating cues is that the in vivo extracellular milieu includes nanoscale topographic interfaces. We investigated nanoscale topography regulation of cell functions using human fetal osteoblastic (hFOB) cell culture on poly(l-lactic acid) and polystyrene (50/50 w/w) demixed nanoscale pit textures (14, 29, and 45nm deep pits). Secondary ion mass spectroscopy revealed that these nanotopographic surfaces had similar surface chemistries to that of pure PLLA because of PLLA component surface segregation during spin casting. We observed that 14 and 29nm deep pit surfaces increased hFOB cell attachment, spreading, selective integrin subunit expression (e.g., alphav relative to alpha5, beta1, or beta3), focal adhesive paxillin protein synthesis and paxillin colocalization with cytoskeletal actin stress fibers, and focal adhesion kinase (FAK) and phosphorylated FAK (pY397) expression to a greater degree than did 45nm deep pits or flat PLLA surfaces. Considering the important role of integrin-mediated focal adhesion and intracellular signaling in anchorage-dependent cell function, our results suggest a mechanism by which nanostructured physical signals regulate cell function. Modulation of integrin-mediated focal adhesion and related cell signaling by altering nanoscale substrate topography will have powerful applications in biomaterials science and tissue engineering.
在开发物理仿生细胞刺激线索时,一个重要的考虑因素是体内细胞外环境包括纳米级地形界面。我们使用人胎儿成骨细胞(hFOB)在聚(L-乳酸)和聚苯乙烯(50/50 w/w)混合的纳米级凹坑纹理(14、29和45nm深的凹坑)上进行细胞培养,研究了纳米级地形对细胞功能的调节作用。二次离子质谱分析表明,由于旋涂过程中聚乳酸成分的表面偏析,这些纳米地形表面具有与纯聚乳酸相似的表面化学性质。我们观察到,14和29nm深的凹坑表面比45nm深的凹坑或平坦的聚乳酸表面更能促进hFOB细胞的附着、铺展、选择性整合素亚基表达(例如,相对于α5、β1或β3的αv)、粘着斑桩蛋白合成以及桩蛋白与细胞骨架肌动蛋白应力纤维的共定位,以及粘着斑激酶(FAK)和磷酸化粘着斑激酶(pY397)的表达。考虑到整合素介导的粘着斑和细胞内信号传导在锚定依赖性细胞功能中的重要作用,我们的结果提示了一种纳米结构物理信号调节细胞功能的机制。通过改变纳米级基底地形来调节整合素介导的粘着斑和相关细胞信号传导将在生物材料科学和组织工程中具有强大的应用。