Suppr超能文献

用于反卷积的可逆跳跃马尔可夫链蒙特卡罗方法

Reversible jump Markov chain Monte Carlo for deconvolution.

作者信息

Kang Dongwoo, Verotta Davide

机构信息

Department of Biopharmaceutical Sciences, University of California San Francisco, 521 Parnassus Avenue UCSF, Box 0446, San Francisco, CA 94143-0446, USA.

出版信息

J Pharmacokinet Pharmacodyn. 2007 Jun;34(3):263-87. doi: 10.1007/s10928-006-9045-x. Epub 2007 Jan 13.

Abstract

To solve the problem of estimating an unknown input function to a linear time invariant system we propose an adaptive non-parametric method based on reversible jump Markov chain Monte Carlo (RJMCMC). We use piecewise polynomial functions (splines) to represent the input function. The RJMCMC algorithm allows the exploration of a large space of competing models, in our case the collection of splines corresponding to alternative positions of breakpoints, and it is based on the specification of transition probabilities between the models. RJMCMC determines: the number and the position of the breakpoints, and the coefficients determining the shape of the spline, as well as the corresponding posterior distribution of breakpoints, number of breakpoints, coefficients and arbitrary statistics of interest associated with the estimation problem. Simulation studies show that the RJMCMC method can obtain accurate reconstructions of complex input functions, and obtains better results compared with standard non-parametric deconvolution methods. Applications to real data are also reported.

摘要

为解决估计线性时不变系统未知输入函数的问题,我们提出了一种基于可逆跳跃马尔可夫链蒙特卡罗(RJMCMC)的自适应非参数方法。我们使用分段多项式函数(样条)来表示输入函数。RJMCMC算法允许探索大量相互竞争的模型空间,在我们的案例中是对应于断点不同位置的样条集合,并且它基于模型之间转移概率的设定。RJMCMC确定:断点的数量和位置、决定样条形状的系数,以及断点、断点数量、系数和与估计问题相关的任意感兴趣统计量的相应后验分布。仿真研究表明,RJMCMC方法能够准确重建复杂的输入函数,并且与标准非参数反卷积方法相比能获得更好的结果。还报告了该方法在实际数据中的应用情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验