Lunn David J
Medical Research Council Biostatistics Unit, Institute of Public Health, University Forvie Site, Robinson Way, Cambridge CB20SR, UK.
J Pharmacokinet Pharmacodyn. 2008 Feb;35(1):85-100. doi: 10.1007/s10928-007-9077-x. Epub 2007 Nov 8.
We illustrate the use of 'reversible jump' MCMC to automate the process of covariate selection in population PK/PD analyses. The output from such an approach can be used not only to determine the 'best' covariate model for each parameter, but also to formally measure the spread of uncertainty across all possible models, and to average inferences across a range of 'good' models. We examine the substantive impact of such model averaging compared to conditioning inferences on the 'best' model alone, and conclude that clinically significant differences between the two approaches can arise. The illustrative data that we consider pertain to the drug vancomycin in 59 neonates and infants, and all analyses are conducted using the WinBUGS software with newly developed 'Jump' interface installed.
我们阐述了如何使用“可逆跳跃”马尔可夫链蒙特卡罗方法(MCMC)来自动化群体药代动力学/药效学(PK/PD)分析中的协变量选择过程。这种方法的输出不仅可用于确定每个参数的“最佳”协变量模型,还能正式衡量所有可能模型中不确定性的分布,并对一系列“良好”模型的推断进行平均。我们研究了与仅基于“最佳”模型进行条件推断相比,这种模型平均的实质性影响,并得出结论:两种方法之间可能会出现具有临床意义的差异。我们所考虑的示例数据涉及59名新生儿和婴儿使用万古霉素的情况,所有分析均使用安装了新开发的“跳跃”界面的WinBUGS软件进行。