Suppr超能文献

谷氨酸变位酶催化反应的耦合运动和氢隧穿的证据。

Evidence for coupled motion and hydrogen tunneling of the reaction catalyzed by glutamate mutase.

作者信息

Cheng Mou-Chi, Marsh E Neil G

机构信息

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA.

出版信息

Biochemistry. 2007 Jan 23;46(3):883-9. doi: 10.1021/bi0616908.

Abstract

Glutamate mutase is one of a group of adenosylcobalamin-dependent enzymes that catalyze unusual isomerizations that proceed through organic radical intermediates generated by homolytic fission of the coenzyme's unique cobalt-carbon bond. These enzymes are part of a larger family of enzymes that catalyze radical chemistry in which a key step is the abstraction of a hydrogen atom from an otherwise inert substrate. To gain insight into the mechanism of hydrogen transfer, we previously used pre-steady-state, rapid-quench techniques to measure the alpha-secondary tritium kinetic and equilibrium isotope effects associated with the formation of 5'-deoxyadenosine when glutamate mutase was reacted with [5'-(3)H]adenosylcobalamin and L-glutamate. We showed that both the kinetic and equilibrium isotope effects are large and inverse, 0.76 and 0.72, respectively. We have now repeated these measurements using glutamate deuterated in the position of hydrogen abstraction. The effect of introducing a primary deuterium kinetic isotope effect on the hydrogen transfer step is to reduce the magnitude of the secondary kinetic isotope effect to a value close to unity, 1.05 +/- 0.08, whereas the equilibrium isotope effect is unchanged. The significant reduction in the secondary kinetic isotope effect is consistent with motions of the 5'-hydrogen atoms being coupled in the transition state to the motion of the hydrogen undergoing transfer, in a reaction that involves a large degree of quantum tunneling.

摘要

谷氨酸变位酶是一组依赖腺苷钴胺素的酶之一,它催化异常的异构化反应,这些反应通过辅酶独特的钴 - 碳键均裂产生的有机自由基中间体进行。这些酶是催化自由基化学反应的更大酶家族的一部分,其中关键步骤是从原本惰性的底物中提取氢原子。为了深入了解氢转移机制,我们之前使用预稳态、快速淬灭技术来测量当谷氨酸变位酶与[5'-(3)H]腺苷钴胺素和L - 谷氨酸反应时,与5'-脱氧腺苷形成相关的α-二级氚动力学和平衡同位素效应。我们表明,动力学同位素效应和平衡同位素效应都很大且呈反比,分别为0.76和0.72。我们现在使用在氢提取位置氘代的谷氨酸重复了这些测量。引入一级氘动力学同位素效应对氢转移步骤的影响是将二级动力学同位素效应的大小降低到接近1的值,即1.05±0.08,而平衡同位素效应不变。二级动力学同位素效应的显著降低与5'-氢原子的运动在过渡态与正在转移的氢的运动耦合一致,该反应涉及大量的量子隧穿。

相似文献

5
Tritium partitioning and isotope effects in adenosylcobalamin-dependent glutamate mutase.
Biochemistry. 2001 Oct 30;40(43):13060-7. doi: 10.1021/bi011298o.
7
Role of tunneling in the enzyme glutamate mutase.
J Phys Chem B. 2012 Nov 26;116(46):13682-9. doi: 10.1021/jp308526t. Epub 2012 Nov 13.
10
Using kinetic isotope effects to probe the mechanism of adenosylcobalamin-dependent enzymes.
Methods Enzymol. 2022;669:151-172. doi: 10.1016/bs.mie.2021.12.018. Epub 2022 Jan 28.

引用本文的文献

1
Using kinetic isotope effects to probe the mechanism of adenosylcobalamin-dependent enzymes.
Methods Enzymol. 2022;669:151-172. doi: 10.1016/bs.mie.2021.12.018. Epub 2022 Jan 28.
2
Probing reversible chemistry in coenzyme B12 -dependent ethanolamine ammonia lyase with kinetic isotope effects.
Chemistry. 2015 Jun 8;21(24):8826-31. doi: 10.1002/chem.201500958. Epub 2015 May 7.
4
Entropic origin of cobalt-carbon bond cleavage catalysis in adenosylcobalamin-dependent ethanolamine ammonia-lyase.
J Am Chem Soc. 2013 Oct 9;135(40):15077-84. doi: 10.1021/ja404467d. Epub 2013 Oct 1.
5
Adenosylcobalamin enzymes: theory and experiment begin to converge.
Biochim Biophys Acta. 2012 Nov;1824(11):1154-64. doi: 10.1016/j.bbapap.2012.03.012. Epub 2012 Apr 3.
6
Update 1 of: Tunneling and dynamics in enzymatic hydride transfer.
Chem Rev. 2010 Dec 8;110(12):PR41-67. doi: 10.1021/cr1001035.
8
Adenosyl radical: reagent and catalyst in enzyme reactions.
Chembiochem. 2010 Mar 22;11(5):604-21. doi: 10.1002/cbic.200900777.
9
Mechanism of radical-based catalysis in the reaction catalyzed by adenosylcobalamin-dependent ornithine 4,5-aminomutase.
J Biol Chem. 2008 Dec 12;283(50):34615-25. doi: 10.1074/jbc.M807911200. Epub 2008 Oct 22.

本文引用的文献

1
Free radical mechanisms in enzymology.
Chem Rev. 2006 Aug;106(8):3302-16. doi: 10.1021/cr050292s.
2
Tunneling and dynamics in enzymatic hydride transfer.
Chem Rev. 2006 Aug;106(8):3095-118. doi: 10.1021/cr050301x.
4
Structural bases of hydrogen tunneling in enzymes: progress and puzzles.
Curr Opin Struct Biol. 2004 Dec;14(6):648-55. doi: 10.1016/j.sbi.2004.10.008.
5
Hydrogen tunneling in quinoproteins.
Arch Biochem Biophys. 2004 Aug 1;428(1):41-51. doi: 10.1016/j.abb.2004.03.013.
7
Radical carbon skeleton rearrangements: catalysis by coenzyme B12-dependent mutases.
Chem Rev. 2003 Jun;103(6):2083-94. doi: 10.1021/cr0204395.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验