Wolthers Kirsten R, Rigby Stephen E J, Scrutton Nigel S
Faculty of Life Sciences, University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess St., Manchester M1 7DN, United Kingdom.
J Biol Chem. 2008 Dec 12;283(50):34615-25. doi: 10.1074/jbc.M807911200. Epub 2008 Oct 22.
We report an analysis of the reaction mechanism of ornithine 4,5-aminomutase, an adenosylcobalamin (AdoCbl)- and pyridoxal L-phosphate (PLP)-dependent enzyme that catalyzes the 1,2-rearrangement of the terminal amino group of D-ornithine to generate (2R,4S)-2,4-diaminopentanoic acid. We show by stopped-flow absorbance studies that binding of the substrate D-ornithine or the substrate analogue D-2,4-diaminobutryic acid (DAB) induces rapid homolysis of the AdoCbl Co-C bond (781 s(-1), D-ornithine; 513 s(-1), DAB). However, only DAB results in the stable formation of a cob(II)alamin species. EPR spectra of DAB and [2,4,4-(2)H(3)]DAB bound to holo-ornithine 4,5-aminomutase suggests strong electronic coupling between cob(II)alamin and a radical form of the substrate analog. Loading of substrate/analogue onto PLP (i.e. formation of an external aldimine) is also rapid (532 s(-1), D-ornithine; 488 s(-1), DAB). In AdoCbl-depleted enzyme, formation of the external aldimine occurs over long time scales (approximately 50 s) and occurs in three resolvable kinetic phases, identifying four distinct spectral intermediates (termed A-D). We infer that these represent the internal aldimine (lambda(max) 416 nm; A), two different unliganded PLP states of the enzyme (lambda(max) at 409 nm; B and C), and the external aldimine (lambda(max) 426 nm; D). An imine linkage with d-ornithine and DAB generates both tautomeric forms of the external aldimine, but with D-ornithine the equilibrium is shifted toward the ketoimine state. The influence of this equilibrium distribution of prototropic isomers in driving homolysis and stabilizing radical intermediate states is discussed. Our work provides the first detailed analysis of radical-based catalysis in this Class III AdoCbl-dependent enzyme.
我们报道了对鸟氨酸4,5-氨基变位酶反应机制的分析,该酶依赖腺苷钴胺素(AdoCbl)和磷酸吡哆醛(PLP),催化D-鸟氨酸末端氨基的1,2-重排,生成(2R,4S)-2,4-二氨基戊酸。我们通过停流吸光度研究表明,底物D-鸟氨酸或底物类似物D-2,4-二氨基丁酸(DAB)的结合会诱导AdoCbl的Co-C键快速均裂(781 s⁻¹,D-鸟氨酸;513 s⁻¹,DAB)。然而,只有DAB能稳定形成钴胺素(II)物种。与全酶鸟氨酸4,5-氨基变位酶结合的DAB和[2,4,4-(²)H₃]DAB的电子顺磁共振光谱表明,钴胺素(II)与底物类似物的自由基形式之间存在强电子耦合。底物/类似物加载到PLP上(即形成外部醛亚胺)也很快(532 s⁻¹,D-鸟氨酸;488 s⁻¹,DAB)。在缺乏AdoCbl的酶中,外部醛亚胺的形成发生在较长时间尺度上(约50 s),并发生在三个可分辨的动力学阶段,确定了四种不同的光谱中间体(称为A-D)。我们推断这些代表内部醛亚胺(λmax 416 nm;A)、酶的两种不同的未配位PLP状态(λmax在409 nm;B和C)以及外部醛亚胺(λmax 426 nm;D)。与D-鸟氨酸和DAB的亚胺键合产生了外部醛亚胺的两种互变异构形式,但与D-鸟氨酸时,平衡向酮亚胺状态移动。讨论了这种质子异构异构体平衡分布在驱动均裂和稳定自由基中间态方面的影响。我们的工作首次对这种III类依赖AdoCbl的酶中基于自由基的催化进行了详细分析。