Suppr超能文献

腺嘌呤核苷自由基:酶反应中的试剂和催化剂。

Adenosyl radical: reagent and catalyst in enzyme reactions.

机构信息

Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.

出版信息

Chembiochem. 2010 Mar 22;11(5):604-21. doi: 10.1002/cbic.200900777.

Abstract

Adenosine is undoubtedly an ancient biological molecule that is a component of many enzyme cofactors: ATP, FADH, NAD(P)H, and coenzyme A, to name but a few, and, of course, of RNA. Here we present an overview of the role of adenosine in its most reactive form: as an organic radical formed either by homolytic cleavage of adenosylcobalamin (coenzyme B(12), AdoCbl) or by single-electron reduction of S-adenosylmethionine (AdoMet) complexed to an iron-sulfur cluster. Although many of the enzymes we discuss are newly discovered, adenosine's role as a radical cofactor most likely arose very early in evolution, before the advent of photosynthesis and the production of molecular oxygen, which rapidly inactivates many radical enzymes. AdoCbl-dependent enzymes appear to be confined to a rather narrow repertoire of rearrangement reactions involving 1,2-hydrogen atom migrations; nevertheless, mechanistic insights gained from studying these enzymes have proved extremely valuable in understanding how enzymes generate and control highly reactive free radical intermediates. In contrast, there has been a recent explosion in the number of radical-AdoMet enzymes discovered that catalyze a remarkably wide range of chemically challenging reactions; here there is much still to learn about their mechanisms. Although all the radical-AdoMet enzymes so far characterized come from anaerobically growing microbes and are very oxygen sensitive, there is tantalizing evidence that some of these enzymes might be active in aerobic organisms including humans.

摘要

腺嘌呤核苷无疑是一种古老的生物分子,是许多酶辅因子的组成部分:ATP、FADH、NAD(P)H 和辅酶 A 等等,当然还有 RNA。在这里,我们概述了腺嘌呤核苷最具反应性的形式的作用:作为一种有机自由基,它可以通过腺苷钴胺素(辅酶 B(12),AdoCbl)的均裂裂解形成,或者通过与铁硫簇结合的 S-腺苷甲硫氨酸(AdoMet)的单电子还原形成。虽然我们讨论的许多酶都是新发现的,但腺嘌呤核苷作为自由基辅因子的作用很可能在光合作用和分子氧产生之前就已经出现了,因为分子氧会迅速使许多自由基酶失活。依赖于 AdoCbl 的酶似乎仅限于涉及 1,2-氢原子迁移的相当狭窄的重排反应;然而,从研究这些酶中获得的机制见解对于理解酶如何生成和控制高反应性的自由基中间体非常有价值。相比之下,最近发现的自由基-AdoMet 酶的数量呈爆炸式增长,它们催化了一系列具有挑战性的化学反应;关于它们的机制,还有很多需要了解的地方。尽管迄今为止所有表征的自由基-AdoMet 酶都来自厌氧生长的微生物,并且对氧气非常敏感,但有令人兴奋的证据表明,这些酶中的一些可能在包括人类在内的需氧生物中具有活性。

相似文献

1
Adenosyl radical: reagent and catalyst in enzyme reactions.
Chembiochem. 2010 Mar 22;11(5):604-21. doi: 10.1002/cbic.200900777.
2
Radical mechanisms in adenosylmethionine- and adenosylcobalamin-dependent enzymatic reactions.
Arch Biochem Biophys. 2000 Oct 1;382(1):6-14. doi: 10.1006/abbi.2000.2010.
3
Radical mechanisms of enzymatic catalysis.
Annu Rev Biochem. 2001;70:121-48. doi: 10.1146/annurev.biochem.70.1.121.
4
Paradigm Shift for Radical S-Adenosyl-l-methionine Reactions: The Organometallic Intermediate Ω Is Central to Catalysis.
J Am Chem Soc. 2018 Jul 18;140(28):8634-8638. doi: 10.1021/jacs.8b04061. Epub 2018 Jul 6.
5
Radical use of Rossmann and TIM barrel architectures for controlling coenzyme B12 chemistry.
Annu Rev Biophys. 2012;41:403-27. doi: 10.1146/annurev-biophys-050511-102225.
6
Adenosylcobalamin enzymes: theory and experiment begin to converge.
Biochim Biophys Acta. 2012 Nov;1824(11):1154-64. doi: 10.1016/j.bbapap.2012.03.012. Epub 2012 Apr 3.
7
S-Adenosylmethionine: a wolf in sheep's clothing, or a rich man's adenosylcobalamin?
Chem Rev. 2003 Jun;103(6):2129-48. doi: 10.1021/cr020422m.
8
Mechanism of Radical Initiation in the Radical S-Adenosyl-l-methionine Superfamily.
Acc Chem Res. 2018 Nov 20;51(11):2611-2619. doi: 10.1021/acs.accounts.8b00356. Epub 2018 Oct 15.
9
Modeling the reactions catalyzed by coenzyme B12-dependent enzymes.
Acc Chem Res. 2010 May 18;43(5):642-51. doi: 10.1021/ar900260c.
10
A Rich Man, Poor Man Story of S-Adenosylmethionine and Cobalamin Revisited.
Annu Rev Biochem. 2018 Jun 20;87:555-584. doi: 10.1146/annurev-biochem-062917-012500.

引用本文的文献

1
Structure-Based Demystification of Radical Catalysis by a Coenzyme B Dependent Enzyme-Crystallographic Study of Glutamate Mutase with Cofactor Homologues.
Angew Chem Weinheim Bergstr Ger. 2022 Aug 26;134(35):e202208295. doi: 10.1002/ange.202208295. Epub 2022 Jul 21.
5
Viperin: An ancient radical SAM enzyme finds its place in modern cellular metabolism and innate immunity.
J Biol Chem. 2020 Aug 14;295(33):11513-11528. doi: 10.1074/jbc.REV120.012784. Epub 2020 Jun 16.
6
One-carbon metabolism, folate, zinc and translation.
Microb Biotechnol. 2020 Jul;13(4):899-925. doi: 10.1111/1751-7915.13550. Epub 2020 Mar 9.
7
Targeting viperin to the mitochondrion inhibits the thiolase activity of the trifunctional enzyme complex.
J Biol Chem. 2020 Feb 28;295(9):2839-2849. doi: 10.1074/jbc.RA119.011526. Epub 2020 Jan 24.
8
Revisiting the methionine salvage pathway and its paralogues.
Microb Biotechnol. 2019 Jan;12(1):77-97. doi: 10.1111/1751-7915.13324. Epub 2018 Oct 10.
9
On the Role of Additional [4Fe-4S] Clusters with a Free Coordination Site in Radical-SAM Enzymes.
Front Chem. 2017 Mar 16;5:17. doi: 10.3389/fchem.2017.00017. eCollection 2017.

本文引用的文献

1
Cobalamin- and corrinoid-dependent enzymes.
Met Ions Life Sci. 2009;6:53-114. doi: 10.1039/BK9781847559159-00053. Epub 2009 Jan 30.
4
Function and biogenesis of iron-sulphur proteins.
Nature. 2009 Aug 13;460(7257):831-8. doi: 10.1038/nature08301.
5
The Zn center of the anaerobic ribonucleotide reductase from E. coli.
J Biol Inorg Chem. 2009 Aug;14(6):923-33. doi: 10.1007/s00775-009-0505-9. Epub 2009 Apr 21.
6
The structural and biochemical foundations of thiamin biosynthesis.
Annu Rev Biochem. 2009;78:569-603. doi: 10.1146/annurev.biochem.78.072407.102340.
7
Product inhibition in the radical S-adenosylmethionine family.
FEBS Lett. 2009 Apr 17;583(8):1358-62. doi: 10.1016/j.febslet.2009.03.044. Epub 2009 Mar 26.
8
Anaerobic functionalization of unactivated C-H bonds.
Curr Opin Chem Biol. 2009 Feb;13(1):58-73. doi: 10.1016/j.cbpa.2009.02.036. Epub 2009 Mar 16.
9
Control of radical chemistry in the AdoMet radical enzymes.
Curr Opin Chem Biol. 2009 Feb;13(1):74-83. doi: 10.1016/j.cbpa.2009.01.022. Epub 2009 Mar 9.
10
The O2 sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4659-64. doi: 10.1073/pnas.0804943106. Epub 2009 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验