Suppr超能文献

利用小靶点荧光原位杂交技术对玉米体细胞染色体进行单基因检测和核型分析。

Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes.

作者信息

Lamb Jonathan C, Danilova Tatiana, Bauer Matthew J, Meyer Julie M, Holland Jennifer J, Jensen Michael D, Birchler James A

机构信息

Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA.

出版信息

Genetics. 2007 Mar;175(3):1047-58. doi: 10.1534/genetics.106.065573. Epub 2007 Jan 21.

Abstract

Combined with a system for identifying each of the chromosomes in a genome, visualizing the location of individual genetic loci by fluorescence in situ hybridization (FISH) would aid in assembling physical and genetic maps. Previously, large genomic clones have been successfully used as FISH probes onto somatic chromosomes but this approach is complicated in species with abundant repetitive elements. In this study, repeat-free portions of sequences that were anchored to particular chromosomes including genes, gene clusters, large cDNAs, and portions of BACs obtained from public databases were used to label the corresponding physical location using FISH. A collection of probes that includes at least one marker on each chromosome in the maize complement was assembled, allowing a small-target karyotyping system to be developed. This set provides the foundation onto which additional loci could be added to strengthen further the ability to perform chromosomal identification in maize and its relatives. The probes were demonstrated to produce signals in several wild relatives of maize, including Zea luxurians, Z. diploperennis, and Tripsacum dactyloides.

摘要

结合用于识别基因组中每条染色体的系统,通过荧光原位杂交(FISH)可视化单个基因座的位置将有助于构建物理图谱和遗传图谱。此前,大型基因组克隆已成功用作体细胞染色体上的FISH探针,但在具有丰富重复元件的物种中,这种方法很复杂。在本研究中,使用从公共数据库获得的、锚定到特定染色体上的无重复序列部分(包括基因、基因簇、大型cDNA和BAC部分),通过FISH标记相应的物理位置。组装了一组探针,其中包括玉米互补基因组中每条染色体上至少一个标记,从而开发出一个小目标核型分析系统。该探针集为添加更多基因座奠定了基础,可进一步增强对玉米及其近缘种进行染色体识别的能力。这些探针已被证明能在玉米的几个野生近缘种中产生信号,包括繁茂玉米、二倍体多年生玉米和类蜀黍。

相似文献

1
Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes.
Genetics. 2007 Mar;175(3):1047-58. doi: 10.1534/genetics.106.065573. Epub 2007 Jan 21.
2
Retroelement genome painting: cytological visualization of retroelement expansions in the genera Zea and Tripsacum.
Genetics. 2006 Jun;173(2):1007-21. doi: 10.1534/genetics.105.053165. Epub 2006 Apr 2.
4
Distinct chromosomal distributions of highly repetitive sequences in maize.
Chromosome Res. 2007;15(1):33-49. doi: 10.1007/s10577-006-1102-1.
6
A universal chromosome identification system for maize and wild Zea species.
Chromosome Res. 2020 Jun;28(2):183-194. doi: 10.1007/s10577-020-09630-5. Epub 2020 Mar 26.
10
Cytogenetic mapping in maize.
Cytogenet Genome Res. 2005;109(1-3):63-9. doi: 10.1159/000082383.

引用本文的文献

1
Mechanisms, Machinery, and Dynamics of Chromosome Segregation in .
Genes (Basel). 2024 Dec 16;15(12):1606. doi: 10.3390/genes15121606.
2
Development and applications of a collection of single copy gene-based cytogenetic DNA markers in garden asparagus.
Front Plant Sci. 2022 Sep 29;13:1010664. doi: 10.3389/fpls.2022.1010664. eCollection 2022.
4
Site-specific recombinase genome engineering toolkit in maize.
Plant Direct. 2020 Mar 9;4(3):e00209. doi: 10.1002/pld3.209. eCollection 2020 Mar.
6
Meiotic crossovers characterized by haplotype-specific chromosome painting in maize.
Nat Commun. 2019 Oct 10;10(1):4604. doi: 10.1038/s41467-019-12646-z.
8
Fluorescence in situ hybridization in plants: recent developments and future applications.
Chromosome Res. 2019 Sep;27(3):153-165. doi: 10.1007/s10577-019-09607-z. Epub 2019 Mar 9.
9
Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships.
Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1679-1685. doi: 10.1073/pnas.1813957116. Epub 2019 Jan 17.
10
Location of low copy genes in chromosomes of Brachiaria spp.
Mol Biol Rep. 2018 Apr;45(2):109-118. doi: 10.1007/s11033-018-4144-5. Epub 2018 Jan 12.

本文引用的文献

1
Distinct chromosomal distributions of highly repetitive sequences in maize.
Chromosome Res. 2007;15(1):33-49. doi: 10.1007/s10577-006-1102-1.
2
Recent proliferation and translocation of pollen group 1 allergen genes in the maize genome.
Plant Physiol. 2007 Mar;143(3):1269-81. doi: 10.1104/pp.106.092544. Epub 2007 Jan 12.
3
Telomere-mediated chromosomal truncation in maize.
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17331-6. doi: 10.1073/pnas.0605750103. Epub 2006 Nov 3.
4
Cytological visualization of DNA transposons and their transposition pattern in somatic cells of maize.
Genetics. 2007 Jan;175(1):31-9. doi: 10.1534/genetics.106.064238. Epub 2006 Oct 22.
6
Organization of endoreduplicated chromosomes in the endosperm of Zea mays L.
Chromosoma. 2006 Oct;115(5):383-94. doi: 10.1007/s00412-006-0068-2. Epub 2006 Jun 2.
7
PROBER: oligonucleotide FISH probe design software.
Bioinformatics. 2006 Oct 1;22(19):2437-8. doi: 10.1093/bioinformatics/btl273. Epub 2006 Jun 1.
8
Retroelement genome painting: cytological visualization of retroelement expansions in the genera Zea and Tripsacum.
Genetics. 2006 Jun;173(2):1007-21. doi: 10.1534/genetics.105.053165. Epub 2006 Apr 2.
10
Structure and architecture of the maize genome.
Plant Physiol. 2005 Dec;139(4):1612-24. doi: 10.1104/pp.105.068718.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验