Suppr超能文献

酵母和哺乳动物中的断裂诱导复制机制。

Break-induced replication mechanisms in yeast and mammals.

机构信息

Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States.

Department of Biology, University of Iowa, Iowa City, IA 52242, United States.

出版信息

Curr Opin Genet Dev. 2021 Dec;71:163-170. doi: 10.1016/j.gde.2021.08.002. Epub 2021 Sep 1.

Abstract

Break-induced replication (BIR) is a pathway specialized in repair of double-strand DNA breaks with only one end capable of invading homologous template that can arise following replication collapse, telomere erosion or DNA cutting by site-specific endonucleases. For a long time, yeast remained the only model system to study BIR. Studies in yeast demonstrated that BIR represents an unusual mode of DNA synthesis that is driven by a migrating bubble and leads to conservative inheritance of newly synthesized DNA. This unusual type of DNA synthesis leads to high levels of mutations and chromosome rearrangements. Recently, multiple examples of BIR were uncovered in mammalian cells that allowed the comparison of BIR between organisms. It appeared initially that BIR in mammalian cells is predominantly independent of RAD51, and therefore different from BIR that is predominantly Rad51-dependent in yeast. However, a series of systematic studies utilizing site-specific DNA breaks for BIR initiation in mammalian reporters led to the discovery of highly efficient RAD51-dependent BIR, allowing side-by side comparison with BIR in yeast which is the focus of this review.

摘要

断裂诱导复制 (BIR) 是一种专门用于修复只有一个末端能够侵入同源模板的双链 DNA 断裂的途径,这种末端可以在复制崩溃、端粒侵蚀或位点特异性内切酶切割后出现。长期以来,酵母一直是研究 BIR 的唯一模式系统。酵母研究表明,BIR 代表了一种不寻常的 DNA 合成方式,它由迁移泡驱动,并导致新合成 DNA 的保守遗传。这种不寻常的 DNA 合成方式会导致高水平的突变和染色体重排。最近,在哺乳动物细胞中发现了多个 BIR 实例,这使得我们可以在不同生物之间比较 BIR。最初,人们发现哺乳动物细胞中的 BIR 主要不依赖 RAD51,因此与酵母中主要依赖 RAD51 的 BIR 不同。然而,一系列利用位点特异性 DNA 断裂在哺乳动物报告细胞中启动 BIR 的系统研究,导致了高效的 RAD51 依赖性 BIR 的发现,这使得我们能够与酵母中的 BIR 进行并排比较,这是本综述的重点。

相似文献

1
Break-induced replication mechanisms in yeast and mammals.酵母和哺乳动物中的断裂诱导复制机制。
Curr Opin Genet Dev. 2021 Dec;71:163-170. doi: 10.1016/j.gde.2021.08.002. Epub 2021 Sep 1.
2
Break-Induced Replication: The Where, The Why, and The How.断裂诱导复制:地点、原因和方式。
Trends Genet. 2018 Jul;34(7):518-531. doi: 10.1016/j.tig.2018.04.002. Epub 2018 May 4.
3
Break-induced replication: unraveling each step.断裂诱导复制:解析每一步骤
Trends Genet. 2022 Jul;38(7):752-765. doi: 10.1016/j.tig.2022.03.011. Epub 2022 Apr 19.
4
Investigation of Break-Induced Replication in Yeast.酵母中断裂诱导复制的研究。
Methods Mol Biol. 2021;2153:307-328. doi: 10.1007/978-1-0716-0644-5_22.
5
Investigation of Break-Induced Replication in Yeast.酵母中断裂诱导复制的研究。
Methods Enzymol. 2018;601:161-203. doi: 10.1016/bs.mie.2017.12.010. Epub 2018 Feb 3.
7
Repair of DNA Breaks by Break-Induced Replication.断裂诱导复制修复 DNA 断裂。
Annu Rev Biochem. 2021 Jun 20;90:165-191. doi: 10.1146/annurev-biochem-081420-095551. Epub 2021 Apr 1.
9
Break induced replication in eukaryotes: mechanisms, functions, and consequences.真核生物中的断裂诱导复制:机制、功能及后果
Crit Rev Biochem Mol Biol. 2017 Aug;52(4):395-413. doi: 10.1080/10409238.2017.1314444. Epub 2017 Apr 21.
10
Template switching during break-induced replication.断裂诱导复制过程中的模板转换
Nature. 2007 May 3;447(7140):102-5. doi: 10.1038/nature05723. Epub 2007 Apr 4.

引用本文的文献

7
HROB Is Implicated in DNA Replication.HROB与DNA复制有关。
Genes (Basel). 2024 Dec 10;15(12):1587. doi: 10.3390/genes15121587.
8
Two-ended recombination at a Flp-nickase-broken replication fork.Flp 切口酶切割的复制叉处的双向重组。
Mol Cell. 2025 Jan 2;85(1):78-90.e3. doi: 10.1016/j.molcel.2024.11.006. Epub 2024 Dec 3.

本文引用的文献

2
Tracking break-induced replication shows that it stalls at roadblocks.追踪断裂诱导复制表明,它在路障处停滞。
Nature. 2021 Feb;590(7847):655-659. doi: 10.1038/s41586-020-03172-w. Epub 2021 Jan 20.
9
Dynamic Processing of Displacement Loops during Recombinational DNA Repair.重组DNA修复过程中置换环的动态处理
Mol Cell. 2019 Mar 21;73(6):1255-1266.e4. doi: 10.1016/j.molcel.2019.01.005. Epub 2019 Feb 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验