Suppr超能文献

负责对酵母tRNA第4位进行修饰的2'-O-甲基转移酶。

The 2'-O-methyltransferase responsible for modification of yeast tRNA at position 4.

作者信息

Wilkinson Martha L, Crary Sharon M, Jackman Jane E, Grayhack Elizabeth J, Phizicky Eric M

机构信息

Department of Biochemistry, University of Rochester School of Medicine, NY 14642, USA.

出版信息

RNA. 2007 Mar;13(3):404-13. doi: 10.1261/rna.399607. Epub 2007 Jan 22.

Abstract

The methylation of the ribose 2'-OH of RNA occurs widely in nature and in all stable RNAs and occurs at five positions in yeast tRNA. 2'-O-methylation of tRNA at position 4 is interesting because it occurs in the acceptor stem (which is normally undermodified), it is the only 2'-O-methylation that occurs in the middle of a duplex region in tRNA, the modification is conserved in eukaryotes, and the features of the tRNA necessary for substrate recognition are poorly defined. We show here that Saccharomyces cerevisiae ORF YOL125w (TRM13) is necessary and sufficient for 2'-O-methylation at position 4 of yeast tRNA. Biochemical analysis of the S. cerevisiae proteome shows that Trm13 copurifies with 2'-O-methylation activity, using tRNAGlyGCC as a substrate, and extracts made from a trm13-Delta strain have undetectable levels of this activity. Trm13 is necessary for activity in vivo because tRNAs isolated from a trm13-Delta strain lack the corresponding 2'-O-methylated residue for each of the three known tRNAs with this modification. Trm13 is sufficient for 2'-O-methylation at position 4 in vitro since yeast Trm13 protein purified after expression in Escherichia coli has the same activity as that produced in yeast. Trm13 protein binds substrates tRNAHis and tRNAGlyGCC with KD values of 85+/-8 and 100+/-14 nM, respectively, and has a KM for tRNAHis of 10 nM, but binds nonsubstrate tRNAs very poorly (KD>1 microM). Trm13 is conserved in eukaryotes, but there is no sequence similarity between Trm13 and other known methyltransferases.

摘要

RNA核糖2'-OH的甲基化在自然界广泛存在于所有稳定RNA中,在酵母tRNA的五个位置发生。tRNA第4位的2'-O-甲基化很有趣,因为它发生在受体茎(通常修饰不足),是tRNA双链区域中间唯一发生的2'-O-甲基化,这种修饰在真核生物中保守,且底物识别所需的tRNA特征定义不明确。我们在此表明,酿酒酵母开放阅读框YOL125w(TRM13)对于酵母tRNA第4位的2'-O-甲基化是必需且充分的。对酿酒酵母蛋白质组的生化分析表明,Trm13与以tRNAGlyGCC为底物的2'-O-甲基化活性共纯化,并且从trm13-Δ菌株制备的提取物中该活性水平不可检测。Trm13在体内对于活性是必需的,因为从trm13-Δ菌株分离的tRNA对于三种已知具有这种修饰的tRNA中的每一种都缺乏相应的2'-O-甲基化残基。Trm13在体外对于第4位的2'-O-甲基化是充分的,因为在大肠杆菌中表达后纯化的酵母Trm13蛋白具有与酵母中产生的相同活性。Trm13蛋白分别以85±8和100±14 nM的KD值结合底物tRNAHis和tRNAGlyGCC,并对tRNAHis的KM为10 nM,但与非底物tRNA结合很差(KD>1μM)。Trm13在真核生物中保守,但Trm13与其他已知甲基转移酶之间没有序列相似性。

相似文献

1
The 2'-O-methyltransferase responsible for modification of yeast tRNA at position 4.
RNA. 2007 Mar;13(3):404-13. doi: 10.1261/rna.399607. Epub 2007 Jan 22.
3
Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10.
RNA. 2013 Aug;19(8):1137-46. doi: 10.1261/rna.039651.113. Epub 2013 Jun 21.
9
Trm7p catalyses the formation of two 2'-O-methylriboses in yeast tRNA anticodon loop.
EMBO J. 2002 Apr 2;21(7):1811-20. doi: 10.1093/emboj/21.7.1811.
10

引用本文的文献

2
Targeting tRNA methyltransferases: from molecular mechanisms to drug discovery.
Sci China Life Sci. 2025 May 7. doi: 10.1007/s11427-024-2886-2.
3
Unveiling transfer RNA modifications of oil palm and their dynamic changes during fruit ripening.
BMC Plant Biol. 2025 Mar 29;25(1):398. doi: 10.1186/s12870-025-06426-9.
4
Identification of Amino Acids in Trm734 Required for 2'--Methylation of the tRNA Wobble Residue.
ACS Omega. 2024 Jun 3;9(23):25063-25072. doi: 10.1021/acsomega.4c02313. eCollection 2024 Jun 11.
5
Charting new territory: The Plasmodium falciparum tRNA modification landscape.
Biomed J. 2024 May 9;48(2):100745. doi: 10.1016/j.bj.2024.100745.
6
Diversity in Biological Function and Mechanism of the tRNA Methyltransferase Trm10.
Acc Chem Res. 2023 Dec 19;56(24):3595-3603. doi: 10.1021/acs.accounts.3c00533. Epub 2023 Dec 4.
8
Investigations of Single-Subunit tRNA Methyltransferases from Yeast.
J Fungi (Basel). 2023 Oct 19;9(10):1030. doi: 10.3390/jof9101030.
9
Epitranscriptome: Review of Top 25 Most-Studied RNA Modifications.
Int J Mol Sci. 2022 Nov 10;23(22):13851. doi: 10.3390/ijms232213851.
10
Ionizing radiation and chemical oxidant exposure impacts on Cryptococcus neoformans transfer RNAs.
PLoS One. 2022 Mar 29;17(3):e0266239. doi: 10.1371/journal.pone.0266239. eCollection 2022.

本文引用的文献

1
Rapid tRNA decay can result from lack of nonessential modifications.
Mol Cell. 2006 Jan 6;21(1):87-96. doi: 10.1016/j.molcel.2005.10.036.
2
MODOMICS: a database of RNA modification pathways.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D145-9. doi: 10.1093/nar/gkj084.
3
Biochemical and genetic analysis of the yeast proteome with a movable ORF collection.
Genes Dev. 2005 Dec 1;19(23):2816-26. doi: 10.1101/gad.1362105.
4
Two different mechanisms for tRNA ribose methylation in Archaea: a short survey.
Biochimie. 2005 Sep-Oct;87(9-10):889-95. doi: 10.1016/j.biochi.2005.02.004. Epub 2005 Mar 7.
8
Spb1p-directed formation of Gm2922 in the ribosome catalytic center occurs at a late processing stage.
Mol Cell. 2004 Nov 19;16(4):663-9. doi: 10.1016/j.molcel.2004.10.022.
9
A facile method for high-throughput co-expression of protein pairs.
Mol Cell Proteomics. 2004 Sep;3(9):934-8. doi: 10.1074/mcp.T400008-MCP200. Epub 2004 Jul 7.
10
The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs.
J Biol Chem. 2004 Apr 23;279(17):17850-60. doi: 10.1074/jbc.M401221200. Epub 2004 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验