Suppr超能文献

三类分类任务中受限ROC曲面的优化

Optimization of restricted ROC surfaces in three-class classification tasks.

作者信息

Edwards Darrin C, Metz Charles E

机构信息

Department of Radiology, University of Chicago, Chicago, IL 60637, USA.

出版信息

IEEE Trans Med Imaging. 2007 Oct;26(10):1345-56. doi: 10.1109/TMI.2007.898578.

Abstract

We have shown previously that an N-class ideal observer achieves the optimal receiver operating characteristic (ROC) hypersurface in a Neyman-Pearson sense. Due to the inherent complexity of evaluating observer performance even in a three-class classification task, some researchers have suggested a generally incomplete but more tractable evaluation in terms of a surface, plotting only the three "sensitivities." More generally, one can evaluate observer performance with a single sensitivity or misclassification probability as a function of two linear combinations of sensitivities or misclassification probabilities. We analyzed four such formulations including the "sensitivity" surface. In each case, we applied the Neyman-Pearson criterion to find the observer which achieves optimal performance with respect to each given set of "performance description variables" under consideration. In the unrestricted case, optimization with respect to the Neyman-Pearson criterion yields the ideal observer, as does maximization of the observer's expected utility. Moreover, during our consideration of the restricted cases, we found that the two optimization methods do not merely yield the same observer, but are in fact completely equivalent in a mathematical sense. Thus, for a wide variety of observers which maximize performance with respect to a restricted ROC surface in the Neyman-Pearson sense, that ROC surface can also be shown to provide a complete description of the observer's performance in an expected utility sense.

摘要

我们之前已经表明,在奈曼 - 皮尔逊意义上,N类理想观察者能实现最优的接收者操作特征(ROC)超曲面。由于即使在三类分类任务中评估观察者性能也存在内在复杂性,一些研究人员建议进行一种通常不完整但更易于处理的评估,即绘制仅包含三个“敏感度”的曲面。更一般地,人们可以用单一敏感度或误分类概率作为敏感度或误分类概率的两个线性组合的函数来评估观察者性能。我们分析了包括“敏感度”曲面在内的四种此类公式。在每种情况下,我们应用奈曼 - 皮尔逊准则来找到在考虑的每组给定“性能描述变量”下实现最优性能的观察者。在无限制情况下,相对于奈曼 - 皮尔逊准则进行优化会得到理想观察者,观察者预期效用最大化时也是如此。此外,在我们考虑受限情况时,我们发现这两种优化方法不仅会得到相同的观察者,而且在数学意义上实际上是完全等效的。因此,对于在奈曼 - 皮尔逊意义上相对于受限ROC曲面最大化性能的各种观察者,该ROC曲面也可以被证明能在预期效用意义上提供对观察者性能的完整描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验