Suppr超能文献

使LROC曲线下面积最大化的决策策略。

Decision strategies that maximize the area under the LROC curve.

作者信息

Khurd Parmeshwar, Gindi Gene

机构信息

Medical Image Processing Lab, Department of Electrical, SUNY at Stony Brook, NY 11794-2350, USA.

出版信息

IEEE Trans Med Imaging. 2005 Dec;24(12):1626-36. doi: 10.1109/TMI.2005.859210.

Abstract

For the 2-class detection problem (signal absent/present), the likelihood ratio is an ideal observer in that it minimizes Bayes risk for arbitrary costs and it maximizes the area under the receiver operating characteristic (ROC) curve [AUC]. The AUC-optimizing property makes it a valuable tool in imaging system optimization. If one considered a different task, namely, joint detection and localization of the signal, then it would be similarly valuable to have a decision strategy that optimized a relevant scalar figure of merit. We are interested in quantifying performance on decision tasks involving location uncertainty using the localization ROC (LROC) methodology. Therefore, we derive decision strategies that maximize the area under the LROC curve, A(LROC). We show that these decision strategies minimize Bayes risk under certain reasonable cost constraints. The detection-localization task is modeled as a decision problem in three increasingly realistic ways. In the first two models, we treat location as a discrete parameter having finitely many values resulting in an (L + 1) class classification problem. In our first simple model, we do not include search tolerance effects and in the second, more general, model, we do. In the third and most general model, we treat location as a continuous parameter and also include search tolerance effects. In all cases, the essential proof that the observer maximizes A(LROC) is obtained with a modified version of the Neyman-Pearson lemma. A separate form of proof is used to show that in all three cases, the decision strategy minimizes the Bayes risk under certain reasonable cost constraints.

摘要

对于二分类检测问题(信号不存在/存在),似然比是一种理想观测器,因为它能使任意代价下的贝叶斯风险最小化,并且能使接收器操作特性(ROC)曲线下的面积[AUC]最大化。AUC优化特性使其成为成像系统优化中的一个有价值的工具。如果考虑一个不同的任务,即信号的联合检测与定位,那么拥有一种能优化相关标量品质因数的决策策略同样具有价值。我们感兴趣的是使用定位ROC(LROC)方法来量化涉及位置不确定性的决策任务的性能。因此,我们推导出能使LROC曲线下面积A(LROC)最大化的决策策略。我们表明,在某些合理的代价约束下,这些决策策略能使贝叶斯风险最小化。检测 - 定位任务以三种越来越现实的方式被建模为一个决策问题。在前两个模型中,我们将位置视为具有有限多个值的离散参数,从而产生一个(L + 1)类分类问题。在我们的第一个简单模型中,我们不包括搜索容差效应,而在第二个更通用的模型中,我们包括了搜索容差效应。在第三个也是最通用的模型中,我们将位置视为连续参数,并且也包括搜索容差效应。在所有情况下,通过对奈曼 - 皮尔逊引理的修改版本来获得观测器使A(LROC)最大化的基本证明。使用一种单独的证明形式来表明,在所有三种情况下,决策策略在某些合理的代价约束下能使贝叶斯风险最小化

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验