Langenbucher Achim, Viestenz Anja, Seitz Berthold, Brünner Holger
Department of Medical Physics, University of Erlangen-Nürnberg, Erlangen, Germany.
Acta Ophthalmol Scand. 2007 Feb;85(1):92-8. doi: 10.1111/j.1600-0420.2006.00721.x.
To describe a paraxial computing scheme for tracing an axial pencil of rays through the 'optical system eye' containing astigmatic surfaces with their axes at random.
Two rays (-10 prism diopters from vertical and horizontal) are traced through the uncorrected and corrected eye. In the uncorrected eye one specific ray is selected from the pencil of rays, which passes through the pupil center. In the corrected eye any ray can be traced through the eye. From the slope angle, the intersection of the ray with the refractive surface and the refraction the slope angle of the exiting ray is determined and the ray is traced to the subsequent surface. From both rays traced through the eye an ellipse is fitted to the image to characterize the image distortion of an circular object.
Assumptions: target refraction -0.5-1.0D/A = 90 degrees at 14 mm, corneal refraction 42.5 + 3.5D/A = 15 degrees, axial length 23.6 mm, IOL position 4.6 mm, central lens thickness 0.8 mm, refractive index 1.42, front/back surface of the toric IOL 10.0 D/7.14 + 6.47D/A = 101.8 degrees. The vertical incident ray was imaged to (x, y) = (0.0055 mm, -1.6470 mm)/(0.0067 mm, -1.6531 mm) in the uncorrected/corrected eye. The horizontal incident ray was imaged to (x, y) = (1.6266 mm, -0.0055 mm)/(1.6001 mm, -0.0067 mm) in the uncorrected/corrected eye. The ellipse (semi-major/semi-minor meridian) fitted to the conjugate image of a circle sized 1.648 mm/1.625 mm in an orientation 14.2 degrees in the uncorrected and 1.654 mm/1.599 mm in an orientation 7.1 degrees in the corrected eye.
This concept may be relevant for the assessment of aniseikonia after implantation of toric intraocular lenses for correction of high corneal astigmatism.
描述一种近轴计算方案,用于追踪一束轴向光线穿过包含散光面且其轴方向随机的“眼光学系统”。
两条光线(与垂直和水平方向成 -10 棱镜度)穿过未矫正和矫正后的眼睛。在未矫正的眼睛中,从光线束中选择一条特定光线,该光线穿过瞳孔中心。在矫正后的眼睛中,可以追踪任意光线穿过眼睛。根据倾斜角、光线与折射面的交点以及折射情况确定出射光线的倾斜角,并将光线追踪到后续表面。通过追踪穿过眼睛的两条光线,对图像拟合一个椭圆,以表征圆形物体的图像畸变。
假设:目标屈光度 -0.5 - 1.0D/A = 90 度,在 14 毫米处,角膜屈光度 42.5 + 3.5D/A = 15 度,眼轴长度 23.6 毫米,人工晶状体位置 4.6 毫米,晶状体中心厚度 0.8 毫米,折射率 1.42,复曲面人工晶状体的前/后表面 10.0 D/7.14 + 6.47D/A = 101.8 度。垂直入射光线在未矫正/矫正后的眼睛中成像为 (x, y) = (0.0055 毫米, -1.6470 毫米)/(0.0067 毫米, -1.6531 毫米)。水平入射光线在未矫正/矫正后的眼睛中成像为 (x, y) = (1.6266 毫米, -0.0055 毫米)/(1.6001 毫米, -0.0067 毫米)。在未矫正的眼睛中,拟合到尺寸为 1.648 毫米/1.625 毫米、方向为 14.2 度的圆形共轭图像的椭圆(半长轴/半短轴子午线),在矫正后的眼睛中,尺寸为 1.654 毫米/1.599 毫米、方向为 7.1 度。
该概念可能与植入复曲面人工晶状体矫正高度角膜散光后不等像的评估有关。