Shibata Junji, Yoshimura Kazuhisa, Honda Akiko, Koito Atsushi, Murakami Toshio, Matsushita Shuzo
Division of Clinical Retrovirology and Infectious Diseases, Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan.
J Virol. 2007 Apr;81(8):3757-68. doi: 10.1128/JVI.01544-06. Epub 2007 Jan 24.
KD-247, a humanized monoclonal antibody to an epitope of gp120-V3 tip, has potent cross-neutralizing activity against subtype B primary human immunodeficiency virus type 1 (HIV-1) isolates. To assess how KD-247 escape mutants can be generated, we induced escape variants by exposing bulked primary R5 virus, MOKW, to increasing concentrations of KD-247 in vitro. In the presence of relatively low concentrations of KD-247, viruses with two amino acid mutations (R166K/D167N) in V2 expanded, and under high KD-247 pressure, a V3 tip substitution (P313L) emerged in addition to the V2 mutations. However, a virus with a V2 175P mutation dominated during passaging in the absence of KD-247. Using domain swapping analysis, we demonstrated that the V2 mutations and the P313L mutation in V3 contribute to partial and complete resistance phenotypes against KD-247, respectively. To identify the V2 mutation responsible for the resistance to KD-247, we constructed pseudoviruses with single or double amino acid mutations in V2 and measured their sensitivity to neutralization. Interestingly, the neutralization phenotypes were switched, so that amino acid residue 175 (Pro or Leu) located in the center of V2 was exchanged, indicating that the amino acid at position 175 has a crucial role, dramatically changing the Env oligomeric state on the membrane surface and affecting the neutralization phenotype against not only anti-V3 antibody but also recombinant soluble CD4. These data suggested that HIV-1 can escape from anti-V3 antibody attack by changing the conformation of the functional envelope oligomer by acquiring mutations in the V2 region in environments with relatively low antibody concentrations.
KD-247是一种针对gp120-V3顶端表位的人源化单克隆抗体,对B亚型1型原发性人类免疫缺陷病毒(HIV-1)分离株具有强大的交叉中和活性。为了评估如何产生KD-247逃逸突变体,我们通过在体外将大量原发性R5病毒MOKW暴露于浓度不断增加的KD-247中来诱导逃逸变体。在相对低浓度的KD-247存在下,V2区有两个氨基酸突变(R166K/D167N)的病毒得以扩增,而在高KD-247压力下,除了V2突变外,还出现了V3顶端替换(P313L)。然而,在没有KD-247的传代过程中,一种具有V2 175P突变的病毒占主导地位。通过结构域交换分析,我们证明V2突变和V3中的P313L突变分别导致对KD-247的部分和完全抗性表型。为了确定对KD-247耐药的V2突变,我们构建了V2区有单个或双个氨基酸突变的假病毒,并测量它们的中和敏感性。有趣的是,中和表型发生了转换,即位于V2中心的氨基酸残基175(脯氨酸或亮氨酸)发生了交换,这表明175位的氨基酸起着关键作用,极大地改变了膜表面Env寡聚体的状态,不仅影响针对抗V3抗体的中和表型,还影响针对重组可溶性CD4的中和表型。这些数据表明,在抗体浓度相对较低的环境中,HIV-1可通过在V2区域获得突变来改变功能性包膜寡聚体的构象,从而逃避抗V3抗体的攻击。