Sweredoski Michael J, Baldi Pierre
Department of Computer Science and Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697-3435, USA.
Bioinformatics. 2008 Jun 15;24(12):1459-60. doi: 10.1093/bioinformatics/btn199. Epub 2008 Apr 28.
Accurate prediction of B-cell epitopes is an important goal of computational immunology. Up to 90% of B-cell epitopes are discontinuous in nature, yet most predictors focus on linear epitopes. Even when the tertiary structure of the antigen is available, the accurate prediction of B-cell epitopes remains challenging.
Our predictor, PEPITO, uses a combination of amino-acid propensity scores and half sphere exposure values at multiple distances to achieve state-of-the-art performance. PEPITO achieves an area under the curve (AUC) of 75.4 on the Discotope dataset. Additionally, we benchmark PEPITO as well as the Discotope predictor on the more recent Epitome dataset, achieving AUCs of 68.3 and 66.0, respectively.
PEPITO is available as part of the SCRATCH suite of protein structure predictors via www.igb.uci.edu.
Supplementary data are available at Bioinformatics online.
准确预测B细胞表位是计算免疫学的一个重要目标。高达90%的B细胞表位本质上是不连续的,但大多数预测器专注于线性表位。即使抗原的三级结构已知,准确预测B细胞表位仍然具有挑战性。
我们的预测器PEPITO使用氨基酸倾向得分和多个距离处的半球暴露值的组合,以实现领先的性能。PEPITO在Discotope数据集上的曲线下面积(AUC)达到75.4。此外,我们在更新的Epitome数据集上对PEPITO以及Discotope预测器进行了基准测试,其AUC分别为68.3和66.0。
可通过www.igb.uci.edu将PEPITO作为蛋白质结构预测器SCRATCH套件的一部分获取。
补充数据可在《生物信息学》在线获取。