Suppr超能文献

用于预测蛋白质上线性B细胞表位的机器学习分类器的选择与组合

Selection and combination of machine learning classifiers for prediction of linear B-cell epitopes on proteins.

作者信息

Söllner Johannes

机构信息

Intercell AG, Campus Vienna Biocenter 6, A-1030 Vienna, Austria.

出版信息

J Mol Recognit. 2006 May-Jun;19(3):209-14. doi: 10.1002/jmr.770.

Abstract

Recently, new machine learning classifiers for the prediction of linear B-cell epitopes were presented. Here we show the application of Receiver Operator Characteristics (ROC) convex hulls to select optimal classifiers as well as possibilities to improve the post test probability (PTP) to meet real world requirements such as high throughput epitope screening of whole proteomes. The major finding is that ROC convex hulls present an easy to use way to rank classifiers based on their prediction conservativity as well as to select candidates for ensemble classifiers when validating against the antigenicity profile of 10 HIV-1 proteins. We also show that linear models are at least equally efficient to model the available data when compared to multi-layer feed-forward neural networks.

摘要

最近,提出了用于预测线性B细胞表位的新型机器学习分类器。在此,我们展示了应用接收者操作特征(ROC)凸包来选择最优分类器,以及提高检验后概率(PTP)以满足诸如全蛋白质组高通量表位筛选等实际需求的可能性。主要发现是,ROC凸包提供了一种易于使用的方法,可根据分类器的预测保守性对其进行排名,并在针对10种HIV-1蛋白的抗原性概况进行验证时为集成分类器选择候选者。我们还表明,与多层前馈神经网络相比,线性模型在对可用数据进行建模时至少具有同等效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验