Suppr超能文献

用于感知处理的神经网络:从模拟工具到理论

Neural networks for perceptual processing: from simulation tools to theories.

作者信息

Gurney Kevin

机构信息

Adaptive Behaviour Research Group, Department of Psychology, University of Sheffield, Sheffield S10 2TP, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2007 Mar 29;362(1479):339-53. doi: 10.1098/rstb.2006.1962.

Abstract

Neural networks are modelling tools that are, in principle, able to capture the input-output behaviour of arbitrary systems that may include the dynamics of animal populations or brain circuits. While a neural network model is useful if it captures phenomenologically the behaviour of the target system in this way, its utility is amplified if key mechanisms of the model can be discovered, and identified with those of the underlying system. In this review, we first describe, at a fairly high level with minimal mathematics, some of the tools used in constructing neural network models. We then go on to discuss the implications of network models for our understanding of the system they are supposed to describe, paying special attention to those models that deal with neural circuits and brain systems. We propose that neural nets are useful for brain modelling if they are viewed in a wider computational framework originally devised by Marr. Here, neural networks are viewed as an intermediate mechanistic abstraction between 'algorithm' and 'implementation', which can provide insights into biological neural representations and their putative supporting architectures.

摘要

神经网络是一种建模工具,原则上能够捕捉任意系统的输入输出行为,这些系统可能包括动物种群动态或脑回路动态。如果神经网络模型能以这种方式从现象学上捕捉目标系统的行为,那么它是有用的;而如果能够发现模型的关键机制,并将其与底层系统的关键机制对应起来,其效用则会进一步增强。在这篇综述中,我们首先以相当高的层面且尽量少用数学知识来描述构建神经网络模型所使用的一些工具。然后我们继续讨论网络模型对于我们理解它们所应描述的系统的意义,特别关注那些处理神经回路和脑系统的模型。我们提出,如果将神经网络置于最初由马尔设计的更广泛的计算框架中看待,那么它们对于脑建模是有用的。在这里,神经网络被视为介于“算法”和“实现”之间的一种中间机制抽象,它能够为生物神经表征及其假定的支持架构提供见解。

相似文献

1
Neural networks for perceptual processing: from simulation tools to theories.
Philos Trans R Soc Lond B Biol Sci. 2007 Mar 29;362(1479):339-53. doi: 10.1098/rstb.2006.1962.
2
Neural population geometry: An approach for understanding biological and artificial neural networks.
Curr Opin Neurobiol. 2021 Oct;70:137-144. doi: 10.1016/j.conb.2021.10.010. Epub 2021 Nov 19.
3
How to incorporate biological insights into network models and why it matters.
J Physiol. 2023 Aug;601(15):3037-3053. doi: 10.1113/JP282755. Epub 2022 Sep 25.
7
Biological constraints on neural network models of cognitive function.
Nat Rev Neurosci. 2021 Aug;22(8):488-502. doi: 10.1038/s41583-021-00473-5. Epub 2021 Jun 28.
9
Development of a scheme and tools to construct a standard moth brain for neural network simulations.
Comput Intell Neurosci. 2012;2012:795291. doi: 10.1155/2012/795291. Epub 2012 Aug 16.
10
Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.
PLoS Comput Biol. 2016 Feb 29;12(2):e1004792. doi: 10.1371/journal.pcbi.1004792. eCollection 2016 Feb.

引用本文的文献

1
Why are biting flies attracted to blue objects?
Proc Biol Sci. 2023 Jun 28;290(2001):20230463. doi: 10.1098/rspb.2023.0463.
2
Additive factors do not imply discrete processing stages: a worked example using models of the stroop task.
Front Psychol. 2011 Nov 14;2:287. doi: 10.3389/fpsyg.2011.00287. eCollection 2011.
3
The brightness of colour.
PLoS One. 2009;4(3):e5091. doi: 10.1371/journal.pone.0005091. Epub 2009 Mar 31.
4
Predator perception and the interrelation between different forms of protective coloration.
Proc Biol Sci. 2007 Jun 22;274(1617):1457-64. doi: 10.1098/rspb.2007.0220.
5
Introduction. The use of artificial neural networks to study perception in animals.
Philos Trans R Soc Lond B Biol Sci. 2007 Mar 29;362(1479):337-8. doi: 10.1098/rstb.2006.1961.

本文引用的文献

1
Parallel Distributed Processing at 25: further explorations in the microstructure of cognition.
Cogn Sci. 2014 Aug;38(6):1024-77. doi: 10.1111/cogs.12148. Epub 2014 Aug 4.
2
Correlation versus gradient type motion detectors: the pros and cons.
Philos Trans R Soc Lond B Biol Sci. 2007 Mar 29;362(1479):369-74. doi: 10.1098/rstb.2006.1964.
3
Critical threshold effects of benthiscape structure on stream herbivore movement.
Philos Trans R Soc Lond B Biol Sci. 2007 Mar 29;362(1479):461-72. doi: 10.1098/rstb.2006.1974.
4
A model biological neural network: the cephalopod vestibular system.
Philos Trans R Soc Lond B Biol Sci. 2007 Mar 29;362(1479):473-81. doi: 10.1098/rstb.2006.1975.
5
Computational models of the basal ganglia: from robots to membranes.
Trends Neurosci. 2004 Aug;27(8):453-9. doi: 10.1016/j.tins.2004.06.003.
7
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
8
Computational analyses in cognitive neuroscience: in defense of biological implausibility.
Psychon Bull Rev. 1999 Jun;6(2):173-82. doi: 10.3758/bf03212325.
9
Propagation of activity-dependent synaptic depression in simple neural networks.
Nature. 1997 Jul 31;388(6641):439-48. doi: 10.1038/41267.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验