Suppr超能文献

膜张力对纳米螺旋桨驱动细菌运动的影响。

Effects of membrane tension on nanopropeller driven bacterial motion.

作者信息

Gupta Roohi, Sharma Megha, Mittal Aditya

机构信息

Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.

出版信息

J Nanosci Nanotechnol. 2006 Dec;6(12):3854-62. doi: 10.1166/jnn.2006.630.

Abstract

Our present capabilities to build nanomachines are very limited compared to the elegance and efficiency of bio-nanomachines. The flagellar motor of bacteria is an example of a bionanomachine. It is a structured aggregate of proteins anchored in many bacterial cell membranes (formed mostly from phospholipids). While a large body of work characterizes various functional components of flagellar proteins, limited literature exists on the role of phospholipids of the membranes anchoring the protein. It is assumed that the membranes do not play any active role in the nano-propeller's functioning. However, it is relevant to question this assumption for several reasons. Firstly, the anchor for any machine on any scale is essential in terms of the work-load the machine can deliver. Secondly, it is now clear that localized protein-lipid interactions are essential for functioning of many transmembrane proteins. These interactions result in formation of "nano-domains" of specific lipid constituents around the protein providing the desired functionality. Thus, regardless of whether the bacterial membrane is primarily an anchor for flagellar proteins or specific lipid components of the membrane are actively participating in nano-propeller driven motion of bacteria, it is important to investigate the role of the membrane itself in working of this bionanomachine. Using video microscopy with a 33 ms resolution to monitor bacterial motion, we investigate effects of varying the membrane tension, by providing different osmotic environments, on the performance of the flagellar motor. Our data strongly demonstrate an active role of bacterial membranes in the nano-propeller driven bacterial motion. Our results point towards reconsidering performance of classical bionanomachines like bacterial flagellar motor and F1-F0 ATPase in view of the membranes in which they are packed in, in contrast to just the proteins by themselves.

摘要

与生物纳米机器的精巧和高效相比,我们目前制造纳米机器的能力非常有限。细菌的鞭毛马达就是一种生物纳米机器的例子。它是锚定在许多细菌细胞膜(主要由磷脂形成)中的蛋白质的结构化聚集体。虽然大量研究描述了鞭毛蛋白的各种功能成分,但关于锚定蛋白的膜中磷脂作用的文献却很有限。人们认为这些膜在纳米推进器的功能中不发挥任何积极作用。然而,出于几个原因,对这一假设提出质疑是有必要的。首先,对于任何规模的机器来说,其锚定对于机器能够承受的工作量至关重要。其次,现在很清楚,局部的蛋白质 - 脂质相互作用对于许多跨膜蛋白的功能是必不可少的。这些相互作用导致在蛋白质周围形成特定脂质成分的“纳米域”,从而提供所需的功能。因此,无论细菌膜主要是鞭毛蛋白的锚定物,还是膜的特定脂质成分积极参与细菌的纳米推进器驱动运动,研究膜本身在这种生物纳米机器工作中的作用都很重要。我们使用分辨率为33毫秒的视频显微镜来监测细菌运动,通过提供不同的渗透环境来改变膜张力,进而研究其对鞭毛马达性能的影响。我们的数据有力地证明了细菌膜在纳米推进器驱动的细菌运动中发挥着积极作用。我们的结果表明,鉴于经典生物纳米机器(如细菌鞭毛马达和F1 - F0 ATP酶)所处的膜环境,与仅考虑蛋白质本身相比,需要重新审视它们的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验