Suppr超能文献

用于脑磁共振成像组织分类的狄利克雷过程混合模型。

A Dirichlet process mixture model for brain MRI tissue classification.

作者信息

Ferreira da Silva Adelino R

机构信息

Electrical Engineering Department, Universidade Nova de Lisboa, Rua Dr. Bastos Goncalves, n.5, 10A, 1600-100 Lisboa, Portugal.

出版信息

Med Image Anal. 2007 Apr;11(2):169-82. doi: 10.1016/j.media.2006.12.002. Epub 2006 Dec 21.

Abstract

Accurate classification of magnetic resonance images according to tissue type or region of interest has become a critical requirement in diagnosis, treatment planning, and cognitive neuroscience. Several authors have shown that finite mixture models give excellent results in the automated segmentation of MR images of the human normal brain. However, performance and robustness of finite mixture models deteriorate when the models have to deal with a variety of anatomical structures. In this paper, we propose a nonparametric Bayesian model for tissue classification of MR images of the brain. The model, known as Dirichlet process mixture model, uses Dirichlet process priors to overcome the limitations of current parametric finite mixture models. To validate the accuracy and robustness of our method we present the results of experiments carried out on simulated MR brain scans, as well as on real MR image data. The results are compared with similar results from other well-known MRI segmentation methods.

摘要

根据组织类型或感兴趣区域对磁共振图像进行准确分类,已成为诊断、治疗规划和认知神经科学中的一项关键要求。几位作者已经表明,有限混合模型在人类正常大脑磁共振图像的自动分割中取得了优异的结果。然而,当模型必须处理各种解剖结构时,有限混合模型的性能和鲁棒性会下降。在本文中,我们提出了一种用于脑磁共振图像组织分类的非参数贝叶斯模型。该模型称为狄利克雷过程混合模型,使用狄利克雷过程先验来克服当前参数化有限混合模型的局限性。为了验证我们方法的准确性和鲁棒性,我们展示了在模拟脑磁共振扫描以及真实磁共振图像数据上进行的实验结果。将这些结果与其他著名的磁共振成像分割方法的类似结果进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验