Zang Wenke, Wang Zehua, Jiang Dong, Liu Xiyu, Jiang Zhenni
Business School, Shandong Normal University, Jinan 250014, China.
Entropy (Basel). 2018 Dec 13;20(12):964. doi: 10.3390/e20120964.
As a non-invasive diagnostic tool, Magnetic Resonance Imaging (MRI) has been widely used in the field of brain imaging. The classification of MRI brain image conditions poses challenges both technically and clinically, as MRI is primarily used for soft tissue anatomy and can generate large amounts of detailed information about the brain conditions of a subject. To classify benign and malignant MRI brain images, we propose a new method. Discrete wavelet transform (DWT) is used to extract wavelet coefficients from MRI images. Then, Tsallis entropy with DNA genetic algorithm (DNA-GA) optimization parameters (called DNAGA-TE) was used to obtain entropy characteristics from DWT coefficients. At last, DNA-GA optimized support vector machine (called DNAGA-KSVM) with radial basis function (RBF) kernel, is applied as a classifier. In our experimental procedure, we use two kinds of images to validate the availability and effectiveness of the algorithm. One kind of data is the Simulated Brain Database and another kind of image is real MRI images which downloaded from Harvard Medical School website. Experimental results demonstrate that our method (DNAGA-TE+KSVM) obtained better classification accuracy.
作为一种非侵入性诊断工具,磁共振成像(MRI)已在脑成像领域广泛应用。MRI脑图像状况的分类在技术和临床方面都带来了挑战,因为MRI主要用于软组织解剖,并且能够生成有关受试者脑部状况的大量详细信息。为了对良性和恶性MRI脑图像进行分类,我们提出了一种新方法。离散小波变换(DWT)用于从MRI图像中提取小波系数。然后,使用具有DNA遗传算法(DNA-GA)优化参数的Tsallis熵(称为DNAGA-TE)从DWT系数中获取熵特征。最后,将具有径向基函数(RBF)核的DNA-GA优化支持向量机(称为DNAGA-KSVM)用作分类器。在我们的实验过程中,我们使用两种图像来验证该算法的可用性和有效性。一种数据是模拟脑数据库,另一种图像是从哈佛医学院网站下载的真实MRI图像。实验结果表明,我们的方法(DNAGA-TE+KSVM)获得了更好的分类准确率。