Amann Anton, Tratnig Robert, Unterkofler Karl
Department of Anesthesia and General Intensive Care, Innsbruck Medical University, A-6020 Innsbruck, Austria.
IEEE Trans Biomed Eng. 2007 Jan;54(1):174-7. doi: 10.1109/TBME.2006.880909.
A pivotal component in automated external defibrillators (AEDs) is the detection of ventricular fibrillation (VF) by means of appropriate detection algorithms. In scientific literature there exists a wide variety of methods and ideas for handling this task. These algorithms should have a high detection quality, be easily implementable, and work in realtime in an AED. Testing of these algorithms should be done by using a large amount of annotated data under equal conditions. For our investigation we simulated a continuous analysis by selecting the data in steps of 1 s without any preselection. We used the complete BIH-MIT arrhythmia database, the CU database, and files 7001-8210 of the AHA database. For a new VF detection algorithm we calculated the sensitivity, specificity, and the area under its receiver operating characteristic curve and compared these values with the results from an earlier investigation of several VF detection algorithms. This new algorithm is based on time-delay methods and outperforms all other investigated algorithms.
自动体外除颤器(AED)的一个关键组件是通过适当的检测算法来检测心室颤动(VF)。在科学文献中,存在各种各样处理此任务的方法和思路。这些算法应具有较高的检测质量,易于实现,并能在AED中实时运行。这些算法的测试应在相同条件下使用大量带注释的数据来进行。为了我们的研究,我们通过以1秒为步长选择数据而不进行任何预选来模拟连续分析。我们使用了完整的BIH-MIT心律失常数据库、CU数据库以及AHA数据库的7001 - 8210文件。对于一种新的VF检测算法,我们计算了其灵敏度、特异性以及其接收器操作特征曲线下的面积,并将这些值与早期对几种VF检测算法的研究结果进行了比较。这种新算法基于时延方法,并且优于所有其他研究过的算法。