Suppr超能文献

混合卷积和长短时记忆网络用于致命性室性心律失常检测。

Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia.

机构信息

Computer Vision Group, Tecnalia Research & Innovation, Derio, Spain.

Department of Communications Engineering, University of the Basque Country UPV/EHU, Bilbao, Spain.

出版信息

PLoS One. 2019 May 20;14(5):e0216756. doi: 10.1371/journal.pone.0216756. eCollection 2019.

Abstract

Early defibrillation by an automated external defibrillator (AED) is key for the survival of out-of-hospital cardiac arrest (OHCA) patients. ECG feature extraction and machine learning have been successfully used to detect ventricular fibrillation (VF) in AED shock decision algorithms. Recently, deep learning architectures based on 1D Convolutional Neural Networks (CNN) have been proposed for this task. This study introduces a deep learning architecture based on 1D-CNN layers and a Long Short-Term Memory (LSTM) network for the detection of VF. Two datasets were used, one from public repositories of Holter recordings captured at the onset of the arrhythmia, and a second from OHCA patients obtained minutes after the onset of the arrest. Data was partitioned patient-wise into training (80%) to design the classifiers, and test (20%) to report the results. The proposed architecture was compared to 1D-CNN only deep learners, and to a classical approach based on VF-detection features and a support vector machine (SVM) classifier. The algorithms were evaluated in terms of balanced accuracy (BAC), the unweighted mean of the sensitivity (Se) and specificity (Sp). The BAC, Se, and Sp of the architecture for 4-s ECG segments was 99.3%, 99.7%, and 98.9% for the public data, and 98.0%, 99.2%, and 96.7% for OHCA data. The proposed architecture outperformed all other classifiers by at least 0.3-points in BAC in the public data, and by 2.2-points in the OHCA data. The architecture met the 95% Sp and 90% Se requirements of the American Heart Association in both datasets for segment lengths as short as 3-s. This is, to the best of our knowledge, the most accurate VF detection algorithm to date, especially on OHCA data, and it would enable an accurate shock no shock diagnosis in a very short time.

摘要

早期使用自动体外除颤器(AED)除颤对于院外心脏骤停(OHCA)患者的生存至关重要。心电图特征提取和机器学习已成功用于 AED 电击决策算法中检测室颤(VF)。最近,已经提出了基于一维卷积神经网络(CNN)的深度学习架构来完成此任务。本研究提出了一种基于 1D-CNN 层和长短期记忆(LSTM)网络的深度学习架构,用于检测 VF。该研究使用了两个数据集,一个来自公开的心律失常发作时 Holter 记录的公共存储库,另一个来自 OHCA 患者发作后几分钟获得的数据。数据按患者划分成训练集(80%)用于设计分类器,测试集(20%)用于报告结果。将所提出的架构与仅使用 1D-CNN 的深度学习器,以及基于 VF 检测特征和支持向量机(SVM)分类器的经典方法进行了比较。根据平衡准确率(BAC)、灵敏度(Se)和特异性(Sp)的无权重平均值对算法进行了评估。对于 4 秒 ECG 片段,该架构在公共数据中的 BAC、Se 和 Sp 分别为 99.3%、99.7%和 98.9%,在 OHCA 数据中的 BAC、Se 和 Sp 分别为 98.0%、99.2%和 96.7%。在所提出的架构在公共数据中 BAC 至少优于其他所有分类器 0.3 分,在 OHCA 数据中 BAC 优于其他所有分类器 2.2 分。该架构满足了美国心脏协会在两个数据集的所有段长(短至 3 秒)的 95%Sp 和 90%Se 要求。这是迄今为止我们所知的最准确的 VF 检测算法,尤其是在 OHCA 数据上,它可以在极短的时间内实现准确的电击或不电击诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77dc/6527215/05efb639f14d/pone.0216756.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验